
Knowing an Object by the Company It Keeps:
A Domain-Agnostic Scheme for Similarity Discovery

Olof Görnerup
Swedish Institute of

Computer Science (SICS)
SE-164 29 Kista, Sweden

Email: olof@sics.se

Daniel Gillblad
Swedish Institute of

Computer Science (SICS)
SE-164 29 Kista, Sweden

Email: dgi@sics.se

Theodore Vasiloudis
Swedish Institute of

Computer Science (SICS)
SE-164 29 Kista, Sweden

Email: tvas@sics.se

Abstract—Appropriately defining and then efficiently calcu-
lating similarities from large data sets are often essential in
data mining, both for building tractable representations and for
gaining understanding of data and generating processes. Here
we rely on the premise that given a set of objects and their
correlations, each object is characterized by its context, i.e. its
correlations to the other objects, and that the similarity between
two objects therefore can be expressed in terms of the similarity
between their respective contexts. Resting on this principle, we
propose a data-driven and highly scalable approach for discov-
ering similarities from large data sets by representing objects
and their relations as a correlation graph that is transformed
to a similarity graph. Together these graphs can express rich
structural properties among objects. Specifically, we show that
concepts – representations of abstract ideas and notions – are
constituted by groups of similar objects that can be identified by
clustering the objects in the similarity graph. These principles
and methods are applicable in a wide range of domains, and will
here be demonstrated for three distinct types of objects: codons,
artists and words, where the numbers of objects and correlations
range from small to very large.

I. INTRODUCTION

As stated by Firth [1] and further popularized in the
computational linguistics community by Church and Hanks
[2], “You shall know a word by the company it keeps”.
Departing from this principle, which can be traced further
back to analytic philosophy, there have been substantial efforts
to infer semantic and syntactic meaning from words through
their effective usage in text [3]. Although the same principle
has been applied in different and seemingly distinct domains,
such as bibliometrics [4] and bioinformatics [5], generalizing
the notion of characterizing objects through their contexts into
a broader fundamental principle for similarity discovery is so
far largely unexplored.

Extending Firth’s line of thought we argue that, with
respect to observed data, the effective semantics of any object
are given by the context in which it occurs, or in other words,
by how it is related (or correlated) to all other objects. The
similarity between two objects may therefore be formulated
in terms of their contexts, or how similar their relations to all
other objects are. A benefit of this is that we can omit the
specific functionality or underlying workings of objects, but
only observe and consider their context patterns. This is highly
attractive from a data-driven machine learning perspective
since it requires very few assumptions about the objects.

With this as a starting point, we propose a graph-based
method for discovering similarities from large data sets. An
object is intentionally left vague since it can be many different
things, such as music tracks in a playlist, people in a social
network, tokens in a text or states in a stochastic process.
We narrow down the scope slightly by only considering
objects that exhibit pairwise relations, e.g. in terms of spatial,
temporal or social correlations, which allows us to represent a
collection of objects and their inter-dependencies as a graph.
Our approach, which we call Contextual Correlation Mining
(CCM), involves two main steps: First, we create a correlation
graph that describes the pairwise correlations between all
objects. A correlation may here be any relationship measure
such as the frequency of co-occurrence, a transition probability
in a stochastic process, a correlation measure such as mutual
information or a weighted edge in a graph. We then transform
the correlation graph to a similarity graph by comparing the
set of correlations of each object to the sets of correlations of
all other objects – the more similar sets of correlations, the
higher the weighted edge in the similarity graph.

The correlation graph is either given at the outset, as a
Markov model or co-occurrence network for example, or built
from data. Since there already exists a multitude of approaches
for achieving this, see e.g. [6], we will here focus on the second
step, which we also view as the main technical contribution
of this paper. Transforming a correlation graph to a similarity
graph is conceptually straightforward, but as an “all-to-all”
similarity problem, it is highly challenging in practice. How-
ever, since we are considering pairwise correlations, we can
utilize that similar objects always occur in proximity in the
correlation graph (at most one neighbour apart to be specific),
which means that it is sufficient to compare objects locally
in the graph. This not only drastically reduces the number
of necessary comparisons, but also facilitates parallelization.
Moreover, given that the correlation graph is sparse1 – which
is the case e.g. for gene co-expression [7], semantic [8], word
co-occurrence [9] and social networks [10], as well as for many
other graphs of interest [6] – we can also prune the correlation
graph substantially prior to transforming it to a similarity graph
while keeping the approximation error low and controllable.

In comparison, related methods are either limited to spe-
cific domains or do not scale well with growing number of

1That is, most objects are either completely unrelated or at most negligibly
correlated. Two randomly selected persons in a large social network, for
instance, most likely do not know each other.

objects, while the approach presented here is both highly
scalable and agnostic with respect to objects and correlation
measures. These are merely seen as vertices and edges in
a graph, and CCM is therefore applicable in a broad range
of domains as well as in mixed-data scenarios where several
different correlation measures may be considered. In this way,
we propose a powerful and efficient scheme that distills the
essence in many related, and seemingly distinct, methods by
using the core principle that objects can be characterized by
the contexts in which they occur.

Furthermore, since CCM does not require any intermediate
representations of objects and their correlations, such as sparse
vectors or neural networks, it is also interpretable and trans-
parent. This enables us to calculate well-understood notions of
similarity and error among other things. Representing objects,
correlations and similarities as graphs will also allow us
to capture rich higher-scale structures among objects – e.g.
without being constrained by geometric properties such as the
triangle inequality – including ambiguity, concept hierarchies
and ontologies, both in terms of correlations and similarities.
Rather than representing data in terms of its raw constituents,
a central task then is often to discover appropriate levels of
abstraction of objects, both for gaining insights about data
and by computational necessity. As an illustrative example,
it may for instance not be appropriate to analyze a large text
corpus in terms of its individual characters, when the data
can be described in terms of words or on more abstract levels
still. We will here demonstrate that CCM can be used for this
purpose. Specifically, we will show that concepts – coarse-
grained abstractions of objects – are constituted by groups of
inter-similar objects that play analogous roles in data, and that
we can discover these by clustering the objects in the similarity
graph.

A. Outline

The remainder of the paper is outlined as follows: Next
we will put the paper in context by giving an overview of
the related state-of-the-art. A background with preliminaries is
presented in Sec. III, followed by a description of the proposed
method in Sec. IV. In Sec. V we demonstrate the versatility of
the method by applying it in three distinct domains, with proof-
of-concepts in computational linguistics, music and molecular
biology. Sec. VI treats the scaling properties of the method,
where we show that it is scalable both in theory and practice.
The paper is concluded in Sec. VII with a summary of our
findings and a discussion on possible future directions.

II. RELATED WORK

The principle of relating objects with respect to contextual
information is employed in several different areas, including
ontology learning, computational linguistics, bioinformatics
and bibliometrics. The method that is closest in spirit to ours
is SimRank [11], which is a general approach for obtaining
similarities between vertices in a graph. SimRank is an iterative
method that uses the graph structure to derive similarities
between objects by relating “objects that are related to similar
objects” [11]. The main drawback with their approach, how-
ever, is that it is not scalable due to a cubic time complexity
with the number of vertices in the graph. This has partly been
remedied in improved versions of the algorithm, such as the

one by Yu et. al [12], but these are still too computationally
demanding in order to be applicable on very large graphs. In
comparison, we can comfortably run our algorithm on graphs
with tens of millions of edges, doing only a single pass over
the data. Ravasz et al. propose a related approach for finding
similar vertices using so called topological overlap measures
[5], which they apply on metabolic networks. Zhang et al.
[13] generalized this approach for use on weighted gene co-
expression networks. As in our case, these methods relate
vertices by assigning higher similarity scores to vertices that
share many neighbors, but since their approaches are primarily
tailored for bioinformatics tasks, they lack the generality of
SimRank and the method presented here.

In computational linguistics, distributional analysis – where
linguistic items are characterized by their relative distributional
properties in the data – has become a fundamental approach
[14]. We use similar assumptions as a starting point, and when
applied to text, the approach can be seen as transforming a
graph over syntagmatic similarities to one describing paradig-
matic similarities [15], in which concepts are discovered
through clustering. A large number of methods to find semantic
similarities have been developed – see [3] for a recent review –
from the seminal work by Church and Hanks [2], and Brown
et al. [16], to more recent approaches, e.g. based on vector
representations, such as GloVe [17], and neural networks,
such as word2vec [18]. Several of these methods could be
used to produce the equivalent of the similarity graph in
which we perform clustering to find concepts. These methods,
however, are limited to natural language processing while our
approach is domain-agnostic. Another important difference
is that our method builds similarity graphs without using
any dimensionality reduction or intermediate representations,
such as high-dimensional vectors or difficult-to-interpret neural
networks. The advantage of using a direct graph representation
is that it allows us to understand and reason about higher-scale
structures among objects and concepts, such as hierarchical
organization, in a straightforward manner using established
graph and network methods. Although graph representations
are used in natural language processing to relate similar words
and documents [19], these approaches have several limitations
in comparison to our approach, e.g. by expecting existing
similarity graphs as input, using ad hoc word relations (such
as linking words separated by and or or), requiring part-of-
speech tagged data, or by using human curated datasets, such
as WordNet [20].

Another related area is ontology learning [21], which aims
to infer taxonomies from corpora and other data sources. While
one can draw parallels between our work and this field, the
latter is often limited by exclusively considering a specific type
of basic building blocks, such as nouns, where these are related
in hierarchies with respect to specific relations, such as is a
and part of. Similarly, context-based similarity discovery can
also be viewed as a generalization of methods in bibliometrics,
where citation patterns among a set of documents, such as
scientific papers, are studied. Using so called bibliographic
coupling to relate papers [4] – i.e. the similarity between two
papers is based on the number of citations they share – is
a special case of our approach for relating two objects in
the correlation graph. Another resemblance is that these and
similar measures are used to cluster scientific papers [22] as
well as web pages [23]. The method presented here could be

employed in the very same way – where binary correlations
are given by citations – to efficiently relate a large number of
documents.

III. BACKGROUND

A. Preliminaries

We begin by specifying the terminology used in this paper.
Due to the transdisciplinary character of the method, we
choose to use general rather than domain-specific terms.

Let C = {i}ni=1 be a set of objects, where each object
has a correlation, ρi,j , to each other object. This relation can
be expressed in terms of real values, probabilities, booleans
or something else that, for instance, represent a correlation
measure, binary or weighted neighbourhood relation in a
graph, co-occurrence probabilities in a corpus, or transition
probabilities in a Markov chain. An object can for example
be a word in text, and the correlations between words can be
their co-occurrence probabilities. In another example, objects
constitute people, and the correlation between two persons is
their strength of friendship.

The context of an object i is considered to be its vector
of relations to every other object, ρi = (ρi,j)

n
j=1. In our word

example, the context of a word is therefore its correlations
to all other words. Analogously, in the people example, the
context of a person is all its friendships.

Under the assumption that an object is characterized by its
context, we can formulate the similarity between two objects i
and j, denoted σi,j , in terms of a similarity measure between
their respective contexts. Here we define σi,j to be 1 subtracted
by the relative L1-norm of the difference between ρi and ρj :

σi,j = 1− |ρi − ρj |1
|ρi|1 + |ρj |1

, (1)

where
|ρi|1 =

∑
k∈C

|ρi,k| (2)

and
|ρi − ρj |1 =

∑
k∈C

|ρi,k − ρj,k|, (3)

denoted L1(i, j) for short. That is, we normalize the absolute
L1-norm of the difference between i and j:s context vectors
with the maximum possible norm of the difference, as given
by |ρi|1 + |ρj |1, and then subtract the result from one in order
to transform it to a similarity measure bounded by 0 and 1,
σi,j ∈ [0, 1].

Since objects are discrete and have pairwise relations, we
can represent C and ρi,j as a directed graph, R = (C,R),
where vertices constitute objects, and where edges ri,j ∈ R
have weights ρi,j . We term this the correlation graph of C
with respect to ρi,j . In principle this is a complete graph since
every vertex has a relation to every other vertex (including
itself) through ρi,j . However, we define the graph such that
there is only an edge between two vertices i and j if their
corresponding objects have a degree of similarity, i.e. when
|ρi − ρj |1 < |ρi|1 + |ρj |1 and i 6= j. In our people-friendship
example, the correlation network is simply a social network.

ab

c
d

e

f

g

a

bc

d
e

f

g
a

bc

d
e

f

g

Fig. 1. A correlation graph is transformed to a similarity graph in which
clustering is performed.

Analogously, the similarity graph of C with regard to ρi,j ,
denoted S = (C, S), is defined to be an undirected graph
where weights of edges si,j ∈ S instead are given by σi,j .

By concept we mean a group of objects that are approx-
imately similar – forming a cluster in the similarity graph –
and therefore approximately interchangeable in their respective
contexts. In the word example this may correspond to a group
of semantically and/or syntactically similar words (e.g. termed
semantic community or topic in the natural language processing
community), whereas in the social network example, a concept
is a group of people that have similar circles of acquaintances.

B. Example

As a simple stylized example, consider the set of objects
C = {a, b, c, d, e, f, g} with the symmetric, binary correlation
graph shown to the left in Fig. 1. Transforming this correlation
graph to the similarity graph shown in the same figure using
Eq. 1, the pairwise similarities become positive when two
objects have overlapping contexts. Each of the two clusters
in the figure is identified as a concept.

Note that in the case of the binary relationship graph, the
L1-norm between two objects, i and j, is given by the number
of neighbours that they do not share:

|ρi−ρj |1 = |ni∪nj |−|ni∩nj | = |ni|+ |nj |−2|ni∩nj |, (4)

where ni and nj are the neighbourhoods of i and j. Since the
maximum possible norm of the difference is |ni| + |nj |, the
similarity between i and j becomes

σi,j = 1− |ni|+ |nj | − 2|ni ∩ nj |
|ni|+ |nj |

=
2|ni ∩ nj |
|ni|+ |nj |

, (5)

which is known as the Sørensen-Dice coefficient [24], [25],
that, in turn, is analogous to the commonly used Jaccard
coefficient [26] through a monotonic transformation.

IV. METHODS

A. Similarity calculations

In order to efficiently and scalably transform a correlation
graph into a similarity graph, we utilize two observations.
Firstly, an object only has a degree of similarity to its second-
order neighbours (its neighbours’ neighbours) in the correla-
tion graph R. Let ni and nj be the neighbouring vertices of i

and j respectively, and ρi,k = 0 if k 6∈ ni. Then

L1(i, j) =
∑
k∈ni

|ρi,k| −
∑

k∈ni∩nj

|ρi,k|

+
∑
k∈nj

|ρj,k| −
∑

k∈ni∩nj

|ρj,k|+
∑

k∈ni∩nj

|ρi,k − ρj,k|

= |ρi|1 + |ρj |1 +
∑

k∈ni∩nj

(|ρi,k − ρj,k| − |ρi,k| − |ρj,k|). (6)

When calculating Eq. 1 it is therefore sufficient to compare
differences between weights ρi,k and ρj,k of edges from i
and j to neighbours k that i and j have in common, give
that we have the weight sums of outgoing edges of i and j.
In practice, we generate a similarity graph by first summing
weights of outgoing edges per vertex, and then building an
intermediate undirected two-hop multigraph of S, where an
edge (i, j) that corresponds to a hop through k in S has weight
|ρi,k − ρj,k| − |ρi,k| − |ρj,k|. The L1-norm between i and j is
then calculated by summing the weights of all edges between
i and j in the multigraph according to Eq. 6, and adding this
to the edge weight sums of i and j.

1) Approximations: Even though we only need to consider
shared neighbours when calculating the similarities between
objects, these calculations still scale unfavorably as the sum of
the square of in-degrees per vertex, since we consider all pairs
of incoming edges of vertex k when generating two-hop edges.
We therefore need to approximate the similarity measure by
reducing in-degrees. To be able to determine whether a certain
object distance with regard to a distance measure D is relevant
or not, typically we would like to ensure that the error ED(i, j)
in any specific distance approximation is less than a fixed level
θD,

ED(i, j) ≤ θD (7)

and more specifically for the L1-norm approximated by L̃1,

E1(i, j) = |L1(i, j)− L̃1(i, j)| ≤ θ1. (8)

If we would like to remove terms by approximating by zero
while keeping the total approximation error ED as small as
possible, we should remove the smallest correlation terms ρi,k
in Eq. 6. Put differently, we discard the edges with the smallest
weights in the correlation graph.

Let τi be a threshold value below which correlations of
object i are approximated by zero, and |ρ̌i|1 the norm of
discarded correlations:

|ρ̌i|1 =
∑

ρi,k<τi

|ρi,k|. (9)

The upper bound of the error is then given by

E1(i, j) ≤ |ρ̌i|1 + |ρ̌j |1, (10)

where E1(i, j) = |ρ̌i|1 + |ρ̌j |1 when the edges of discarded
relations of i and j do not share any destination vertex k. When
calculating the object similarity based on the L1-norm, we
can therefore reduce the number of terms we need to compare
by removing low correlation values with predictable errors.
Lowering the number of terms in Eq. 6 while guaranteeing an
error E1(i, j) ≤ θ1 is then a matter of sorting correlations ρi,k
and, starting with the smallest one, removing all relations until

0.0 0.2 0.4 0.6 0.8 1.0
Edge weight

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

ut
io

n
fu

nc
ti

on

Fig. 2. The cumulative distribution function of edge weights in the Billion
word correlation graph described in Sec. V-A shows that a large fraction of
edges with low weights can be pruned. For example, approximately 90% of
the edges are discarded when considering edges with weights ≥ 0.01.

the cumulative sum exceeds half the distance error threshold,
θ1/2.

This brings us to our second observation, which is that in
most correlation graphs of interest, a substantial fraction of
the correlations from one object to others are, if not zero, very
small or even magnitudes smaller than its largest relations, as
exemplified in Fig. 2. Thus, we may effectively prune a large
fraction of the links while keeping the cumulative discarded
weight (and error) comparatively low, further reducing com-
putational complexity.

Moreover, if reducing terms in Eq. 6 has priority over
accuracy, we may start at the other end by specifying a
maximum in-degree per vertex, and keep the corresponding
number of incoming edges with the largest weights. Doing so
we utilize that the main bulk of vertices have low in-degrees
and are therefore not affected by the pruning. This situation
is illustrated in Fig. 3. By calculating and storing the sums of
discarded weights of outgoing edges per vertex, we can then
readily calculate the error bound per object pair according to
Eq. 10.

B. Clustering

After transforming a correlation graph to a similarity graph,
the latter typically exhibits tightly grouped objects that are
similar according to measure σi,j . We can therefore identify
concepts by clustering the vertices, which is also known as
community detection. There is a large number of available
algorithms with varying suitability with regard to accuracy and
scalability [27]. However, it is beyond the scope of this paper
to evaluate the performance of different clustering algorithms
in this context. Instead we use a simple and transparent clus-
tering method. The approach resembles standard distributed
algorithms for identifying connected components in graphs
and works as follows: We begin by initializing each vertex
i to form its own cluster, indexed by ci = i. Then, for each
vertex i, we set its cluster index to be the smallest cluster index
of i:s neighbours j for which σi,j ≥ σmin, where σmin is a
threshold value. This is repeated until no more cluster indices
are changed. In this way, cluster memberships are propagated

0 200 400 600 800 1000
In-degree

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
is

tr
ib

ut
io

n
fu

nc
ti

on

Fig. 3. The cumulative distribution function of in-degrees for the graph
referred to in Fig. 2 illustrates that it is possible to apply an in-degree threshold
while affecting comparably few vertices. Only a small percentage of the
vertices are affected, for instance, when capping the in-degree at 500 edges.

within components that are separated by edges with weights
σi,j ≤ σmin. The interpretation of – and rationale for – this
approach is that clusters in the graph are groups of vertices that
are interlinked with a certain degree of similarity, as specified
by σmin, and where the clusters, in turn, are interlinked with
weaker similarity relations.

C. Implementation

The calculations of the approximations and error bounds
of the norms of the differences |ρi − ρj |1, as formulated
in Eq. 6, lend themselves well to functional programming,
since they can be implemented as a small number of standard
transformations applied on a collection of correlation graph
edges. The procedure can be summarized in the following
steps:

1) Prune the correlation graph by filtering out edges with
weights below a given threshold value, τi, and/or by
keeping a given number of incoming edges with the
largest weights per vertex.

2) For each vertex i, calculate the norms |ρi|1 (the
weight sum prior to pruning), |ρ̌i|1 (the weight sum
of discarded edges) and |ρ̂i|1 (the weight sum of kept
edges), where |ρ̌i|1 is simply acquired by subtracting
|ρ̂i|1 from |ρi|1.

3) Calculate the sum term in Eq. 6, denoted Λi,j ,
for each pair of vertices that share a neighbour in
the pruned correlation graph. This step is described
in pseudo-code in Fig. 4 and involves a self-join
operation for building a two-hop multigraph that
links second-order neighbours, followed by a map
transformation for calculating the terms in the sum,
which subsequently are summed up per vertex pair
by a reduce operation.

4) For each vertex pair (i, j) in the previous step,
calculate the approximate relative L1-norm, l̃i,j , as
l̃i,j = (Λi,j + ψi,j)/ψi,j and the upper error bound,
εi,j , as εi,j = (|ρ̌i|1 + |ρ̌j |1)/ψi,j , where the nor-
malizing factor ψi,j = |ρi|1 + |ρj |1 is the maximum
possible difference between i and j.

After completing step 4 it is straightforward to calculate the
approximate similarity σ̃i,j = 1− l̃i,j according to Eq. 1. Note
that l̃i,j is a conservative approximation of the true relative
L1-norm, li,j , since l̃i,j − εi,j ≤ li,j ≤ l̃i,j . For this reason,
the acquired similarity approximation will be the “worst case
scenario” in the sense that it is always larger than the true
relative L1-norm.

The method is implemented in the Scala programming
language and uses the in-memory data processing frame-
work Apache Spark [28], which enables us to employ the
method at scale in terms of computing hardware. To facilitate
reproducibility, the implementation will be made available
with an open source license in an online repository.2 Since
we are exclusively using standard core primitives in Spark
(map, filter, join etc.), implementing the method in
other similar frameworks, such as Apache Flink [29], is also
possible.

V. EXPERIMENTS

In order to demonstrate the broad applicability of our
approach, we will now showcase it for three distinct types of
objects: words, artists and codons. Here we prioritize breadth
over depth, and more in-depth evaluations of the method’s
performance with respect to specific applications will be topics
of future publications.

A. Words

We begin by relating words in terms of their co-occurrence
in text, where two words, i and j, co-occur if they both appear
within a window of n words. In the simplest case, for n = 2,
words therefore co-occur if they are adjacent. There exist
many different word association measures, see [30] for a large
number of examples, such as pointwise mutual information [2]
and normalized versions thereof [31]. Here we simply measure
the association between i and j as the relative frequency of j
occurring in i:s context, or, in other words, as the conditional
probability that a randomly selected word in a window that
contains i, will be the word j. That is, ρi,j ≈ ci,j/ci, where
ci and ci,j are the number of occurrences of i, and i together
with j, respectively. Note that this measure is not symmetric
and so ρi,j 6= ρj,i may be true. There likely exists more appro-
priate measures, such as the aforementioned pointwise mutual
information, with regard to specific applications. However, for
the purpose of demonstrating our approach, we believe the
conditional probability measure suffices.

The method is applied on two datasets: the Billion word
[32] and the Google Books n-gram [33], [34] corpora. The
former consists of nearly one billion tokens and originates from
crawled online news texts. From these we count the number
of occurrences of bigrams (pairs of adjacent words) with
words consisting only of alphabetic characters. This results
in approximately 8 million unique bigrams and a vocabulary
with roughly 0.3 million words. From the bigram counts we
relate words by their ordered adjacency.

Despite the comparably modest size of this corpus and
the narrow context window, the method manages to discover

2https://github.com/sics-dna/concepts

1: ins = edges.map(((i,j),rij) => (j,(i,rij)))
2: pairs = ins.join(ins).filter((k,((i,rik),(j,rjk))) => i<j)
3: terms = pairs.map((k,((i,rik),(j,rjk))) => ((i,j),abs(rik-rjk)-abs(rik)-abs(rjk)))
4: .reducebykey((v,w) => v+w)

Fig. 4. Pseudo-code of the sum term calculation in Eq. 6. 1) Edge tuples with vertex indices i and j, and weights rij are mapped to key-value pairs keyed
by destination vertices. 2) A two-hop graph is generated through self-join, and unique in-edge pairs are extracted through filtering. 3) All terms in the sum in
Eq. 6 are calculated and 4) summed per two-hop neighbour pair.

garbage

rubbish trash

steepersharp
steep

steepestsharpest
marrow

organ
liver

kidney

expressedexpressing

expresses
voicing

voiced

cello
violin

piano
wheat

soybean
coca

poppy

welterweight

middleweight

heavyweight

harshest

harsher

harsh

tighter

stiffer

tougher

toughen
lax

strict
stricter

stringent

norovirus

salmonellacholera

sars
coli

electromagnetic

ultraviolet
uv

differing

dissenting conflicting

contradictory

contrasting

appreciative

rowdy

raucous boisterous

unruly

jubilant
adoring

cheering
disruptive

meticulously

beautifully
finely

elegantly

painstakingly

desktop

laptop

macintosh

notebooktablet

netbook gourmet

nutritious

vegetarian

healthy
healthier

healthful

vegan

unhealthy

baroque

modernist

modular
minimalist

poliohpv
rabies

influenza
measles

hiv
flu

anxiously

eagerly

nervously

keenly

totally

utterlywholly

nissan

toyota

ford

honda

fiercely

resolutely

vigorously
strongly

intensely

staunchly steadfastly

bitterly

stubbornly

idyllic

scenic
sleepy

picturesque

tranquil

undercover

atf

dea

fbi

mossad

kgb

upmarket
trendy

upscale

chic

posh
fashionable

combative

unorthodox

proactive

pragmatic

uncompromising
belligerent

unconventional

confrontational

conciliatory

defiant

northbound

southbound

westbound

eastbound

horrific

grisly

horrendous

gruesome
thunderous

deafening

loud

loudest

radioactive

poisonous

hazardous

toxic

flammable

staunch

vocalstrident

vociferous

fervent

ardent

stalwart

outspoken

chilly
warmer

frigid
freezing

milder
treacherousicy

colder

coldest

snowy

cooler

calmer

drier

hip

tendon

ligament
achilles

shoulder

knee
elbow

wrist

maternal

paternal

infant

Fig. 5. Examples of concepts in a word similarity graph based on the Billion word corpus are constituted by clusters of similar words. For sake of clarity,
edges with weights σi,j ≥ 0.15 are shown.

groups of words that reflect both syntactic and semantic con-
cepts. Examples of such concepts are shown in Fig. 5, where
we see that the clusters correspond e.g. to specific nouns,
(tablet, laptop, notebook etc.), adjectives (chic, trendy, fash-
ionable etc.), or adverbs (strongly, intensely, vigorously, etc.).
Note that antonyms, in addition to synonyms, may occur in
the same group (e.g. warmer and colder). This highlights that
the notion of similarity (here corresponding to what is termed
relatedness in the NLP field) is very much dependent on the
choice of correlation measure. The correlation measure may
therefore be both application and domain-specific, whereas
the definition of similarity, given the correlation measure, is
domain-agnostic. Accordingly, antonyms are indeed similar
by definition with respect to the correlation measure used
in this example. However, for other correlation measures,
possibly supporting negative correlations, antonyms may occur
in separate concepts.

The Google Books n-gram dataset, which consists of 361
billion tokens for the English language version of the dataset,
is used both to evaluate the scalability of the method, which
will be discussed in Sec. VI, and to quantify the quality of
resulting similarity relations. An n-gram can be defined as a
contiguous sequence of n words in a text. To further challenge
the method, we apply it on correlation graphs with respect

to co-occurrence windows of size 5. This results in a denser
correlation graph, since a word has more neighbors due to
the larger co-occurrence window size. Nevertheless, the key
properties that we describe in Sec. IV-A1 still apply and we
can prune away a large number of edges with low weights.

A common approach to quantitatively evaluate the perfor-
mance of word association methods is to use benchmarks with
word pairs that have been manually graded with respect to
degree of association. Since these benchmarks also contain
unassociated words, it is not possible to do a direct compar-
ison between our method and other approaches in terms of
benchmark performance, since our method exclusively relates
words that have a certain degree of similarity (indeed, this is
one of the reasons it is scalable). However, to give an indication
of the method’s performance, we measure the Spearman rank
correlation coefficient between benchmark similarities and σi,j
for word pairs (i, j) that do exist in the similarity graph.
For this purpose we use the standard WS-353 test collection
[35], which consists of 353 word pairs that have been graded
by human annotators. We build a similarity graph from co-
occurrence windows of size 5, filter out words that occur with
a frequency less than 10−8 and edges ρi,j < 10−3, and set the
maximum in-degree to 200. In this graph, which is built in less
than 10 minutes (cf. Fig. 9), 60% of the WS-353 word pairs

are present, resulting in a Spearman rank correlation of 0.76.
The current state of the art (with respect to the whole dataset)
is 0.81 [36], [37]. These figures represent the correlation with
respect to the average annotator score. Note, however, that
there is low inter-annotator agreement in WS-353, where the
mean performance of individual annotators, with respect to the
mean score of the remaining annotators, is in fact also 0.76
[38].

B. Artists

In the next proof-of-concept we relate artists by using
a dataset that represents the listening habits of users of the
Last.fm music service.3 This dataset, provided by Celma [39],
consists of approximately 19 million track plays of 992 users.
For each user, we extract sequences of played artists - there are
roughly 177000 in total - and consider the context of an artist
to be defined by the probability distribution of subsequently
played artists. Hence, we assume artists are related in a Markov
chain, where each artist constitutes a state, and where there
is a directed edge from artist i to artist j weighted with the
probability that j is played next, given that i is currently
playing. This probability is simply estimated as ρi,j ≈ ci,j/ci,
where ci and ci,j are the number of times i, and i followed
by j occur in the data set, respectively.

The in-degree distribution of the artist correlation graph
resembles those of the word correlation graphs, which again
means that relatively few vertices are affected by in-degree
pruning. Transforming the artist correlation graph to a sim-
ilarity graph also results in tightly grouped artists that can
be clustered, where the resulting clusters appear to represent
musical genres as exemplified in Fig. 6. As such, the similarity
graph could be used in a music recommendation system to
relate similar artists through the listening habits of users,
similar to a collaborative filtering system. We could then also
provide an intuitive way to incorporate the popularity of artists
via their play frequencies in order to mitigate the effect of
popularity bias in recommendations [40].

C. Codons

Finally, we apply the method in molecular biology, where
we consider codons as objects. Codons are triplets of adjacent
nucleotides in DNA that translate to amino acid residues
that in turn form proteins. These are related through codon
substitution dynamics, which is central both for understanding
molecular evolution and in applications such as DNA sequence
alignment [41]. Since there are only 64 codons in total, this
example differs from the previous two in that we consider
relatively few objects.

Codon substitutions are often modeled as Markov processes
[41], where the substitution probabilities of a codon at a spe-
cific location are assumed to be independent of neighbouring
codons as well as previous codons at the same location. In
this example we use an empirically derived codon substitution
matrix provided by Schneider et al. [42], where we consider
the context of a codon i to be given by the relative substitution
frequencies (ρi,j)

n
j=1 to other codons j.

3http://www.last.fm/

Richard Wagner

Sir Edward Elgar

Giuseppe Verdi
Franz Liszt

Gustav Mahler

Felix Mendelssohn

Jean Sibelius

Franz SchubertRobert Schumann

Georg Friedrich Händel

Johannes Brahms
Joseph Haydn

Gabriel Fauré

Maurice Ravel
Claude Debussy

Tomaso Giovanni Albinoni

Antonio Vivaldi

Antonín Dvo

Rakim

Raekwon Sunz Of Man
Wu-Tang Clan

Masta Killa

Afu-Ra
U-God

CappadonnaGang Starr

Black Star

Lloyd Banks

Gza/Genius

Nas Inspectah Deck

Method Man & Redman Az

Killah Priest Jeru The Damaja

Method Man

Ol' Dirty Bastard
D.I.T.C.

Ghostface Killah

Classic Wu-Tang
Instrumentals

Masta Ace

Mobb Deep

Army Of The
Pharaohs

Rza

Shyheim

Big L

Black Uhuru

The Congos

Culture

Gregory Isaacs

Jacob Miller
Beenie Man

The Mighty Diamonds
Dry & Heavy

Israel Vibration

Peter Tosh

Horace Andy

The Upsetters

Cornell Campbell

Buju Banton
Augustus Pablo

Barrington Levy

Capleton
Max Romeo

The Abyssinians

Anthony B

Sizzla

Burning Spear

Bunny Wailer

Fig. 6. Examples of clusters in an artist similarity graph correspond to three
distinct music genres. Edges with weights σi,j ≥ 0.5 are shown.

GAG/E

GAA/E
TGA/*

TAA/*

TAG/*

CAA/Q

CAG/Q

AAA/K

CGA/R

AGA/R

CGG/R AGG/R

AAG/K

CGC/R
CGT/R

TGT/C

TGC/C

GAT/D

GAC/D
GCA/A GCG/A

GCT/A GCC/A

CCG/P CCA/P

CCC/P CCT/P

TTC/F

TTT/F

CAT/H
CAC/H

TCA/S
TCG/S

TCT/S

TCC/S

AGT/S
AAC/N

AAT/N
AGC/S

TAT/Y

TAC/Y

CTA/L

GTG/V

CTG/L

ATG/M

TTG/L

TTA/L

GTA/V

ATA/I

ATT/I

GTT/VATC/I

CTC/L

GTC/V

CTT/L
GGG/G

GGA/G

GGC/G

GGT/G

ACA/TACG/T

ACT/T ACC/TPolar

Acidic polarNon-polar Basic polar

Fig. 7. Codon similarity graph where vertices are labeled with c/a for codon
c coding to amino acid a. Edges with weights σi,j ≥ 0.45 are shown. Vertices
are color coded with respect to amino acids and grouped by properties. Note
that when the edge weight threshold is lowered, clusters containing several
amino acids are split by amino acid. The rare and low mutable amino acid
tryptophan is omitted.

As seen in the resulting codon similarity graph in Fig. 7,
codons that translate to the same amino acid according to the
standard genetic code [43] tend to be grouped. This reflects that
codons that are highly similar are commutable – quite literary
– since substitutions between these codons are neutral under
evolution. These clusters are also present in the correlation
graph and therefore preserved through the similarity graph
transformation.

We now shift perspective and view “amino acid” as a
concept. Again looking at Fig. 7, we see that some of the amino
acids are grouped. This can be explained by a higher degree of
neutrality within groups than between them, which has been
observed in empirical amino acid substitution matrices, such
as the accepted point mutation (PAM) matrix by Dayhoff et
al. [44]. In comparison, Wu and Brutlag derived amino acid
substitution groups by group-wise (as opposed to pairwise)
statistical analysis of protein databases [45]. The groups shown
in Fig. 7 ({I, L, M, V}, {K, R} and {N, S}) all agree with their

200 400 600 800 1000 1200 1400
In-degree threshold

0.3

0.4

0.5

0.6

0.7

M
ea

n
er

ro
r

bo
un

d

1000

2000

3000

4000

5000

6000

7000

R
un

ti
m

e
[s

]

Fig. 8. Runtime, mean error bound and standard deviation of error bound
(shown as error bars) for different in-degree thresholds, and ρi,j ≥ 10−5.
Built from bigrams in the Billion word corpus using a commodity laptop.

findings. In summary, the codon similarity graph captures both
concepts and higher-order concepts: from codons to amino
acids, via the genetic code, to higher-order amino acids that
constitute known substitution groups.

VI. SCALABILITY

In order to enable practical use on large tasks in terms
of the number of objects, correlations and example data, a
key design goal is scalability. Since we are using relational
primitives to represent graphs, the scalability of the algorithm
can be studied using established results from relational algebra
[46], [47].

The most computationally demanding component of the
algorithm is building the two-hop graph through a self-join
operation (the third step in Sec. IV-C). Since a self-join is a
conjunctive query [46] in relational algebra terms, we can rea-
son about its computational cost. Specifically for a distributed
environment, Koutris et al. [48] define a parallel algorithm as
a sequence of parallel computation steps, and define its cost
as the number of steps required to complete the algorithm.
The authors prove that a join operation can be completed in
one parallel computational step using the hash-join algorithm,
by using a communication and a computation phase. Just as
importantly they prove that the hash-join operation is load
balanced and as such it ensures linear speedup (doubling the
server count reduces the load by half) and constant scale-
up (when doubling both the size of the data and number
of servers, the running time remains the same). Specifically
for the Apache Spark platform, on which we implement
the algorithm, the self-join operation creates what Zaharia et
al. [28] call a narrow dependency. This property allows for
pipelined executions of all operations on one node up until
the reduction step in Fig. 4, without the need for expensive
data shuffles through the network.

To demonstrate that our approach is applicable at scale in
practice, we apply it on one of the largest, to our knowledge,
text corpora currently available, the Google Books n-gram
dataset [33], [34], which corresponds to approximately 4% of
all books ever printed. The dataset is publicly available, and in
our experiments we use the version that is available through

100 150 200 250 300 350 400
In-degree threshold

0.65

0.70

0.75

0.80

0.85

0.90

M
ea

n
er

ro
r

bo
un

d

400

600

800

1000

1200

1400

R
un

ti
m

e
[s

]

Fig. 9. Runtime, mean error bound and standard deviation of error bound
(shown as error bars) for different in-degree thresholds, and ρi,j ≥ 10−3.
Built from Google Books 5-grams using an Amazon EC2 cluster (see text for
details).

the Amazon S3 service.4 As described in Sec. V-A, we use
the English language corpus which contains approximately 361
billion tokens. When processed into 5-grams, the corpus results
in a file with 24.5 billion rows and the total compressed size
of the dataset is 221.5 GB. This data is pre-processed to create
the correlation graph by retaining only alphabetic characters.
The resulting correlation graph before pruning has 706,108
vertices and 94,945,991 edges.

To perform the experiments we employ an Apache Spark
cluster created using the Amazon Web Services EC2 service.5
The cluster consists of 8 nodes (1 master and 7 slaves), where
each node has 4 vCPUs and 30.5 GiB of memory (EC2
instance type r3.xlarge), such that the total amount of memory
available to the cluster is roughly 186 GiB, as reported by
Spark.

The experiment results support the theoretical investigation
of the computational cost of the algorithm, and together with
the pruning described in Section IV-A1 we are able to trans-
form correlation graphs into similarity graphs in reasonable
amounts of time. This also holds true when using more modest
computational resources, as shown in Fig. 8, for building
similarity graphs using the Billion word corpus as described
in Sec. V-A. Analogous results are achieved in the Google
5-gram case, here with runtimes on the order of minutes, as
seen in Fig. 9. The experiments were replicated three times,
and the runtimes are reported in Table I. Fig. 8 and Fig. 9
also illustrate the trade-off between accuracy, controlled via
the in-degree threshold, and runtime, where the runtime scales
favourably with an increasing in-degree threshold. With respect
to the in-degree threshold, we also observe a sublinear scaling
of the number of edges in the correlation graph, and a linear
growth of the number of edges in the similarity graph, as
shown in Fig. 10. This reflects the situation exemplified in
Fig. 3, namely that comparably few vertices are affected by
the in-degree threshold.

4https://aws.amazon.com/datasets/8172056142375670
5http://aws.amazon.com/ec2/

100 150 200 250 300 350 400
In-degree threshold

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
N

um
be

r
of

ed
ge

s
in

co
rr

el
at

io
n

gr
ap

h
×107

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
um

be
r

of
ed

ge
s

in
si

m
ila

ri
ty

gr
ap

h

×109

Fig. 10. Number of edges in the correlation- and similarity graph, respec-
tively, for different in-degree thresholds. Same configuration as in Fig. 9.

TABLE I. RUNTIMES IN SECONDS FOR GOOGLE BOOKS DATASET.

In-degree Run 1 Run 2 Run 3 µ σ

100 246.7 229.5 236.7 237.6 8.6

200 603.7 573.2 575.4 584.1 16.9

300 1062.4 998.3 1031.2 1030.7 32.0

400 1535.5 1602.5 1554.0 1564.0 34.6

VII. CONCLUSIONS

This paper proposes a conceptually simple method for
discovering similarities and concepts through transforming a
correlation graph to a similarity graph on which clustering is
performed. As the method does not rely on any intermediate
representation or dimensionality reduction, it is applicable with
few restrictions to any domain in which a correlation graph can
be constructed. Our experiments show that the approach not
only can detect similarities and concepts in several types of
data, but also that it is computationally feasible for large-scale
applications with very large numbers of objects.

Due to the generality of the approach there is a vast
number of possible directions to take. For instance, CCM
can potentially be used to discover analogous objects in gene
regulatory data or protein interaction networks, to provide
recommendations from user data, or in general for detecting
higher-order dynamics in discrete-valued stochastic processes.
It then remains to quantitatively evaluate the properties of
the scheme, for example in terms of application specific
benchmark performance, approximation error and runtime.

The main methodological challenge for future work re-
volves around how to efficiently build hierarchical concept
models. The concepts discovered through the methods de-
scribed in this paper essentially represent OR-relations: All
constituent objects of a cluster are commutable, and the
concept can be said to be observed if any of its constituents are.
Analogously, strong clusters detected in the correlation graph
could be considered to represent AND-relations, where the
corresponding concept is observed when all of its constituents
are. Both these types of concepts can be identified, brought
back into the estimation of the correlation graph, and the
process iterated, allowing for the discovery of complex higher-
order relations. How to reliably and efficiently perform this

remains an area of further study.

ACKNOWLEDGMENT

This work was funded by the Swedish Foundation for
Strategic Research (Stiftelsen för strategisk forskning) and
the Knowledge Foundation (Stiftelsen för kunskaps- och
kompetensutveckling). The authors would like to thank the
anonymous reviewers for their valuable comments.

REFERENCES

[1] J. R. Firth, “A synopsis of linguistic theory 1930–55.” in Studies in
Linguistic Analysis (special volume of the Philological Society). The
Philological Society, 1957, vol. 1952-59, pp. 1–32.

[2] K. W. Church and P. Hanks, “Word association norms, mutual informa-
tion, and lexicography,” Computational Linguistics, vol. 16, no. 1, pp.
22–29, 1990.

[3] S. Harispe, S. Ranwez, S. Janaqi, and J. Montmain, “Semantic Similar-
ity from Natural Language and Ontology Analysis,” Synthesis Lectures
on Human Language Technologies, vol. 8, no. 1, pp. 1–254, 2015.

[4] M. Kessler, “Bibliographic coupling between scientific papers,” Amer-
ican Documentation 14, pp. 10–25, 1963.

[5] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-
L. Barabási, “Hierarchical organization of modularity in metabolic
networks,” Science, vol. 297, no. 5586, pp. 1551–1555, 2002.

[6] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-
works,” Rev. Mod. Phys., vol. 74, no. 1, pp. 47–97, Jan. 2002.

[7] I. K. Jordan, L. Mariño Ramı́rez, Y. I. Wolf, and E. V. Koonin, “Con-
servation and Coevolution in the Scale-Free Human Gene Coexpression
Network,” Molecular Biology and Evolution, vol. 21, no. 11, pp. 2058–
2070, 2004.

[8] M. Steyvers and J. B. Tenenbaum, “The large-scale structure of se-
mantic networks: statistical analyses and a model of semantic growth.”
Cognitive science, vol. 29, no. 1, pp. 41–78, 2005.

[9] R. F. Cancho and R. V. Solé, “The small world of human language,”
Proceedings of the Royal Society of London. Series B: Biological
Sciences, vol. 268, no. 1482, pp. 2261–2265, 2001.

[10] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee, “Measurement and analysis of online social networks,” in
Proceedings of the 7th ACM SIGCOMM Conference on Internet Mea-
surement, ser. IMC ’07. New York, NY, USA: ACM, 2007, pp. 29–42.

[11] G. Jeh and J. Widom, “SimRank: A Measure of Structural-context
Similarity,” in Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’02.
New York, NY, USA: ACM, 2002, pp. 538–543.

[12] W. Yu, W. Zhang, X. Lin, Q. Zhang, and J. Le, “A space and time
efficient algorithm for SimRank computation,” World Wide Web, vol. 15,
no. 3, pp. 327–353, 2012.

[13] B. Zhang and S. Horvath, “A general framework for weighted gene co-
expression network analysis,” Statistical applications in genetics and
molecular biology, vol. 4, p. Article17, 2005.

[14] Z. Harris, “Distributional structure,” Papers in structural and transfor-
mational Linguistics, 1970.

[15] M. Sahlgren, “The Word-Space Model: using distributional analysis
to represent syntagmatic and paradigmatic relations between words in
high-dimensional vector spaces.” Ph.D. dissertation, Stockholm Univer-
sity, 2006.

[16] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C.
Lai, “Class-based N-gram Models of Natural Language,” Computational
Linguistics, vol. 18, no. 4, pp. 467–479, 1992.

[17] J. Pennington, R. Socher, and C. Manning, “Glove: Global Vectors
for Word Representation,” in Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, 2014, pp. 1532–1543.

[18] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in Neural Information Processing Systems, 2013,
pp. 3111–3119.

[19] R. Mihalcea and D. Radev, Graph-based natural language processing
and information retrieval. Cambridge University Press, 2011.

[20] G. A. Miller, “WordNet: a lexical database for English,” Communica-
tions of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[21] W. Wong, W. Liu, and M. Bennamoun, “Ontology learning from text:
A look back and into the future,” ACM Comput. Surv., vol. 44, no. 4,
pp. 20:1–20:36, 2012.

[22] H. Small, “Co-citation in the scientific literature: A new measure of the
relationship between two documents,” Journal of the American Society
for Information Science, vol. 24, no. 4, pp. 265–269, 1973.

[23] R. Larson, “Bibliometrics of the World Wide Web: An exploratory
analysis of the intellectual structure of cyberspace,” Ann. Meeting of
the American Soc. Info. Sci., 1996.

[24] L. R. Dice, “Measures of the amount of ecologic association between
species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.

[25] T. Sørensen, “A method of establishing groups of equal amplitude in
plant sociology based on similarity of species and its application to
analyses of the vegetation on Danish commons,” Biol. Skr., vol. 5, pp.
1–34, 1948.

[26] P. Jaccard, “The Distribution of the Flora in the Alpine Zone,” New
Phytologist, vol. 11, no. 2, pp. 37–50, 1912.

[27] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[28] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pre-
sented as part of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12), San Jose, CA, 2012, pp. 15–28.

[29] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske,
A. Heise, O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters,
A. Rheinländer, M. J. Sax, S. Schelter, M. Höger, K. Tzoumas, and
D. Warneke, “The Stratosphere platform for big data analytics,” The
VLDB Journal, pp. 163–181, 2014.

[30] P. Pecina, “A machine learning approach to multiword expression
extraction,” in Proceedings of the LREC 2008 Workshop Towards a
Shared Task for Multiword Expressions. European Language Resources
Association, 2008, pp. 54–57.

[31] G. Bouma, “Normalized (pointwise) mutual information in collocation
extraction,” in From form to meaning: Processing texts automatically,
Proceedings of the Biennial GSCL Conference, 2009, pp. 31–40.

[32] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, and P. Koehn,
“One billion word benchmark for measuring progress in statistical
language modeling.” CoRR, vol. abs/1312.3005, 2013.

[33] J. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, T. G. B. Team,
J. P. Pickett, D. Holberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker,
M. A. Nowak, and E. L. Aiden, “Quantitative analysis of culture using
millions of digitized books,” Science, 2010.

[34] Y. Lin, J. Michel, E. L. Aiden, J. Orwant, W. Brockman, and S. Petrov,
“Syntactic Annotations for the Google Books Ngram Corpus,” in
Proceedings of the ACL 2012 System Demonstrations, ser. ACL ’12.
Stroudsburg, PA, USA: Association for Computational Linguistics,
2012, pp. 169–174.

[35] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolf-
man, and E. Ruppin, “Placing search in context: The concept revisited,”
in Proceedings of the 10th International Conference on World Wide
Web, ser. WWW ’01. New York, NY, USA: ACM, 2001, pp. 406–
414.

[36] G. Halawi, G. Dror, E. Gabrilovich, and Y. Koren, “Large-scale learning
of word relatedness with constraints,” in Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. New York, NY, USA: ACM, 2012, pp. 1406–1414.

[37] W. Yih and V. Qazvinian, “Measuring word relatedness using hetero-
geneous vector space models,” in Proceedings of the 2012 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, ser. NAACL HLT ’12.
Stroudsburg, PA, USA: Association for Computational Linguistics,
2012, pp. 616–620.

[38] F. Hill, R. Reichart, and A. Korhonen, “Simlex-999: Evaluating
semantic models with (genuine) similarity estimation,” CoRR, vol.
abs/1408.3456, 2014.

[39] Ò. Celma, Music Recommendation and Discovery in the Long Tail.
Springer, 2010.

[40] Ò. Celma and P. Cano, “From hits to niches? or how popular artists can
bias music recommendation and discovery,” in Proceedings of the 2nd
KDD Workshop on Large-Scale Recommender Systems and the Netflix
Prize Competition. ACM, 2008, p. 5.

[41] M. Anisimova and C. Kosiol, “Investigating protein-coding sequence
evolution with probabilistic codon substitution models.” Molecular
Biology and Evolution, vol. 26, no. 2, pp. 255–271, 2009.

[42] A. Schneider, G. Cannarozzi, and G. Gonnet, “Empirical codon substi-
tution matrix,” BMC Bioinformatics, vol. 6, no. 134, 2005.

[43] M. Nirenberg, P. Leder, M. Bernfield, R. Brimacombe, J. Trupin,
F. Rottman, and C. O’Neal, “RNA Codewords and Protein Synthesis,
VII. On the General Nature of the RNA Code,” Proceedings of the
National Academy of Science, vol. 53, pp. 1161–1168, May 1965.

[44] M. O. Dayhoff and R. M. Schwartz, “Chapter 22: A model of evolu-
tionary change in proteins,” in Atlas of Protein Sequence and Structure,
1978.

[45] T. D. Wu and D. L. Brutlag, “Discovering empirically conserved amino
acid substitution groups in databases of protein families,” in Proceed-
ings of the Fourth International Conference on Intelligent Systems for
Molecular Biology, St. Louis, MO, USA, June 12-15 1996, D. J. States,
P. Agarwal, T. Gaasterland, L. Hunter, and R. Smith, Eds. AAAI,
1996, pp. 230–240.

[46] A. K. Chandra and P. M. Merlin, “Optimal implementation of conjunc-
tive queries in relational data bases,” in Proceedings of the Ninth Annual
ACM Symposium on Theory of Computing, ser. STOC ’77. New York,
NY, USA: ACM, 1977, pp. 77–90.

[47] D. Bitton, H. Boral, D. J. DeWitt, and W. K. Wilkinson, “Parallel
algorithms for the execution of relational database operations,” ACM
Transactions in Database Systems, vol. 8, no. 3, pp. 324–353, Sep.
1983.

[48] P. Koutris and D. Suciu, “Parallel evaluation of conjunctive queries,” in
Proceedings of the Thirtieth ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, ser. PODS ’11. New York,
NY, USA: ACM, 2011, pp. 223–234.

