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Abstract. Appropriately defining and efficiently calculating similarities from large
data sets are often essential in data mining, both for gaining understanding of data and
generating processes, and for building tractable representations. Given a set of objects
and their correlations, we here rely on the premise that each object is characterized
by its context, i.e. its correlations to the other objects. The similarity between two
objects can then be expressed in terms of the similarity between their contexts. In
this way, similarity pertains to the general notion that objects are similar if they are
exchangeable in the data. We propose a scalable approach for calculating all relevant
similarities among objects by relating them in a correlation graph that is transformed to
a similarity graph. These graphs can express rich structural properties among objects.
Specifically, we show that concepts – abstractions of objects – are constituted by groups
of similar objects that can be discovered by clustering the objects in the similarity
graph. These principles and methods are applicable in a wide range of fields, and will
here be demonstrated in three domains: computational linguistics, music and molecular
biology, where the numbers of objects and correlations range from small to very large.

Keywords: Similarity discovery; Concept mining; Distributional semantics; Graph
processing

1. Introduction

As stated by Firth (1957) and further popularized in the computational linguis-
tics community by Church and Hanks (1990), “You shall know a word by the
company it keeps”. Based on this principle, underpinned by Harris’ distributional
hypothesis (Harris, 1954), there have been substantial efforts to infer semantic
and syntactic meaning from words through their effective usage in text (Harispe
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et al., 2015). Although the same principle has been applied in different and seem-
ingly distinct domains, such as bibliometrics (Kessler, 1963) and bioinformatics
(Ravasz et al., 2002), generalizing the notion of characterizing objects through
their contexts into a broader fundamental principle for similarity discovery is so
far largely unexplored.

Generalizing Harris’ distributional hypothesis, we argue that the effective
semantics of any object, with respect to observed data, are characterized by the
context in which it occurs, or in other words, by how it is related (or correlated) to
all other objects. The similarity between two objects may therefore be formulated
in terms of their contexts, or how similar their relations to all other objects are.
A benefit of this is that we can omit the specific functionality or underlying
workings of objects, but only observe and consider their context patterns. This
is highly attractive from a data-driven machine learning perspective since it
requires very few assumptions about the objects.

With this as a starting point, we propose a graph-based method for discover-
ing similarities from large data sets. An object is intentionally left vague since it
can be many different things, such as music tracks in a playlist, people in a social
network, tokens in a text or states in a stochastic process. We narrow down the
scope slightly by only considering objects that exhibit pairwise relations, e.g. in
terms of spatial, temporal or social correlations, which allows us to represent
a collection of objects and their inter-dependencies as a graph. Our approach,
which we call contextual correlation mining (CCM), involves two main steps:
First, we create a correlation graph that describes the pairwise correlations be-
tween all objects. A correlation may here be any relationship measure such as
the frequency of co-occurrence, a transition probability in a stochastic process,
a correlation measure such as mutual information or a weighted edge in a graph.
Second, we transform the correlation graph to a similarity graph by comparing
the set of correlations of each object to the sets of correlations of all other ob-
jects – the more similar sets of correlations, the higher the weighted edge in the
similarity graph.

The correlation graph is either given at the outset, as a Markov model or co-
occurrence network for example, or built from data. Since there already exists a
multitude of approaches for achieving this, see e.g. (Albert and Barabási, 2002),
we will here focus on the second step, which we also view as the main techni-
cal contribution of this paper. Transforming a correlation graph to a similarity
graph is conceptually straightforward, but as an “all-to-all” similarity problem,
it is highly challenging in practice. However, since we are considering pairwise
correlations, we can utilize that similar objects always occur in proximity in the
correlation graph (at most one neighbour apart to be specific), which means that
it is sufficient to compare objects locally in the graph. This not only drastically
reduces the number of necessary comparisons, but also facilitates paralleliza-
tion. Moreover, given that the correlation graph is sparse2 – which is the case
e.g. for gene co-expression (Jordan et al., 2004), semantic (Steyvers and Tenen-
baum, 2005), word co-occurrence (Cancho and Solé, 2001) and social networks
(Mislove et al., 2007), as well as for many other graphs of interest (Albert and
Barabási, 2002) – we can also prune the correlation graph substantially prior to

2 That is, most objects are either completely unrelated or at most negligibly correlated. Two
randomly selected persons in a large social network, for instance, most likely do not know each
other.
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transforming it to a similarity graph while keeping the approximation error low
and controllable.

In comparison, related methods are either limited to specific domains or do
not scale well with growing number of objects, while the approach presented here
is both scalable and agnostic with respect to objects and correlation measures.
These are merely seen as vertices and edges in a graph, and CCM is therefore
applicable in a broad range of domains as well as in mixed-data scenarios where
several different correlation measures may be considered. In this way, we pro-
pose a powerful and efficient scheme that distills the essence in many related,
and seemingly distinct, methods by using the core principle that objects can be
characterized by the contexts in which they occur.

Furthermore, since CCM does not require any intermediate representations
of objects and their correlations, such as sparse vectors or neural networks, it is
also interpretable and transparent. This enables us to calculate well-understood
notions of similarity and error among other things. Representing objects, corre-
lations and similarities as graphs will also allow us to capture rich higher-scale
structures among objects – e.g. without being constrained by geometric prop-
erties such as the triangle inequality – including ambiguity, hierarchies and on-
tologies, both in terms of correlations and similarities. Rather than representing
data in terms of its raw constituents, a central task then is often to discover
appropriate levels of abstraction of objects, both for gaining insights about data
and by computational necessity. We will here demonstrate that CCM can be
used for this purpose. Specifically, we will show that concepts – abstract gen-
eralizations of objects – are constituted by groups of inter-similar objects that
play analogous roles in the data, and that we can discover these by clustering
the objects in the similarity graph.

Similarities and concepts are both general notions, but discovering these from
data in an unsupervised manner has several concrete applications. An immediate
use of similarity discovery, for example, is in recommendation systems, where
sensible recommendations of similar music, products, services etc. may be given
based on contextual information. Concepts can also be used to overcome the
curse of dimensionality in machine learning, where generalizations reduce the
dimensionality of the state space that needs to be explored. This could be of
value in classification tasks for instance, where annotated examples are expressed
in terms of concepts rather than raw objects.

This paper is based on (Görnerup et al., 2015), with the following additions:
an extended analysis of approximation error bounds; a description and demon-
stration of an improved vertex clustering algorithm for concept discovery; an
extended evaluation, including a comparison with a state-of-the-art word embed-
ding method and a gold standard for word similarity; and a parameter sensitivity
analysis with regard to approximation errors and relevant graph measures.

1.1. Outline

The remainder of the paper is outlined as follows: Next we will put the paper
in context by giving an overview of the related state-of-the-art. A background
with preliminaries is presented in Sec. 3, followed by a description of proposed
methods in Sec. 4, including theoretical investigations on error bounds and scal-
ability. In Sec. 5 we demonstrate the versatility of the method by applying it in
three distinct domains: computational linguistics, music and molecular biology.
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We also evaluate acquired word similarities against a gold standard and compare
the result with current the state-of-the-art in word vector embedding; demon-
strate the applicability of the concept discovery method; perform a parameter
sensitivity analysis; and experimentally evaluate scalability properties. The pa-
per is concluded in Sec. 6 with a summary of our findings and a discussion on
possible future directions.

2. Related work

The principle of relating objects with respect to contextual information is em-
ployed in several different areas, including ontology learning, computational lin-
guistics, bioinformatics and bibliometrics. To our knowledge, the method that
is closest in spirit to ours is SimRank (Jeh and Widom, 2002), which is a gen-
eral approach for obtaining similarities between vertices in a graph. SimRank
is an iterative method that uses the graph structure to derive similarities be-
tween objects by relating “objects that are related to similar objects” (Jeh and
Widom, 2002). The main drawback with their approach, however, is that it is not
scalable due to a cubic time complexity with the number of vertices in the graph.
This has partly been remedied in improved versions of the algorithm, such as
the one by Yu et al. (2012), but these are still too computationally demanding in
order to be applicable on very large graphs. In comparison, we can comfortably
run our algorithm on substantial graphs, doing only a single pass over the data.
Leicht et al. (2006) propose a similarity calculation method which deals with
another limitation of SimRank, namely that similarities are only calculated for
nodes connected by paths of even length. The authors propose an alternative
iterative method, but it suffers from much of the same scalability problems as
with SimRank.

In molecular biology, Ravasz et al. (2002) propose an approach for finding
similar vertices using so called topological overlap measures, which they apply on
metabolic networks. Zhang and Horvath (2005) generalized this approach for use
on weighted gene co-expression networks. As in our case, these methods relate
vertices by assigning higher similarity scores between vertices that share many
neighbors, but since their approaches are primarily tailored for bioinformatics
tasks, they lack the generality of SimRank and the method presented here.

In computational linguistics, distributional analysis – where linguistic items
are characterized by their relative distributional properties in the data – has
become a fundamental approach (Harris, 1954). We use similar assumptions as
a starting point, and when applied to text, the approach can be seen as trans-
forming a graph over syntagmatic similarities to one describing paradigmatic
similarities (Sahlgren, 2006), in which concepts are discovered through cluster-
ing. A large number of methods to find semantic similarities have been developed
– see (Harispe et al., 2015) for a recent review – from the seminal work by Church
and Hanks (1990), and Brown et al. (1992), to more recent approaches such as
GloVe (Pennington et al., 2014) and word2vec (Mikolov et al., 2013). These
methods, however, generate vector embeddings of words, and to calculate all
similarities among these scales quadratically with the number or words at worst.
Our method, in contrast, calculates all relevant similarities at scale, and is not
limited to the natural language processing domain. Another important differ-
ence is that our method builds similarity graphs without using any dimensional-
ity reduction or intermediate representations, such as high-dimensional vectors
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or difficult-to-interpret neural networks. The advantage of using a direct graph
representation is that it allows us to understand and reason about higher-scale
structures among objects and concepts, such as hierarchical organization, in a
straightforward manner using established graph and network methods. Although
graph representations are used in natural language processing to relate similar
words and documents (Mihalcea and Radev, 2011), these approaches have several
limitations in comparison to our approach, e.g. by expecting existing similarity
graphs as input, using ad hoc word relations (such as linking words separated
by and or or), requiring part-of-speech tagged data, or by using human curated
datasets, such as WordNet (Miller, 1995).

Another related area is ontology learning (Wong et al., 2012), which aims
to infer taxonomies from corpora and other data sources. While one can draw
parallels between our work and this field, the latter is often limited by exclusively
considering a specific type of basic building blocks, such as nouns, where these
are related in hierarchies with respect to specific relations, such as is a and
part of. Similarly, context-based similarity discovery can also be viewed as a
generalization of methods in bibliometrics, where citation patterns among a set
of documents, such as scientific papers, are studied. Using so called bibliographic
coupling to relate papers (Kessler, 1963) – i.e. the similarity between two papers
is based on the number of citations they share – is a special case of our approach
for relating two objects in the correlation graph. Another resemblance is that
these and similar measures are used to cluster scientific papers (Small, 1973) as
well as web pages (Larson, 1996). The method presented here could be employed
in the very same way – where binary correlations are given by citations – to
efficiently relate a large number of documents.

3. Background

3.1. Preliminaries

We begin by specifying the terminology used in this paper. Due to the transdis-
ciplinary character of the method, we choose to use general rather than domain-
specific terms.

Let C = {i}ni=1 be a set of objects, where each object has a correlation, ρi,j , to
each other object. This relation can be expressed in terms of real values, booleans
or something else that, for instance, represent a correlation measure, binary or
weighted neighbourhood relation in a graph, co-occurrence probabilities in a
corpus, or transition probabilities in a Markov chain. An object can for example
be a word in text, and the correlations between words can be their co-occurrence
probabilities. In another example, objects constitute people, and the correlation
between two persons is their strength of acquaintance.

The context of an object i is considered to be its vector of relations to every
other object, ρi = (ρi,j)

n
j=1. In our word example, the context of a word is

therefore its correlations to all other words. Analogously, in the people example,
the context of a person is all that person’s acquaintances.

Under the assumption that an object is characterized by its context, we can
formulate the similarity between two objects i and j, denoted σi,j , in terms of a
similarity measure between their respective contexts. Here we define σi,j to be 1
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Fig. 1. A correlation graph is transformed to a similarity graph in which clustering is per-
formed.

subtracted by the relative L1-norm of the difference between ρi and ρj :

σi,j = 1− |ρi − ρj |1
|ρi|1 + |ρj |1

, (1)

where

|ρi|1 =
∑
k∈C

|ρi,k| (2)

and

|ρi − ρj |1 =
∑
k∈C

|ρi,k − ρj,k|, (3)

denoted L1(i, j) for short. That is, we normalize the absolute L1-norm of the
difference between i and j:s context vectors with the maximum possible norm of
the difference, as given by |ρi|1 + |ρj |1, and then subtract the result from one in
order to transform it to a similarity measure bounded by 0 and 1, σi,j ∈ [0, 1].

Since objects are discrete and have pairwise relations, we can represent C and
ρi,j as a directed graph (it it directed since the correlations are not necessarily
symmetric), R = (C,R), where vertices constitute objects, and where edges
ri,j ∈ R have weights ρi,j . We term this the correlation graph of C with respect
to ρi,j . In principle this is a complete graph since every vertex has a relation to
every other vertex (including itself) through ρi,j . However, we define the graph
such that there is only an edge between two vertices i and j if their corresponding
objects have a degree of similarity, i.e. when |ρi−ρj |1 < |ρi|1+ |ρj |1 and i 6= j. In
our people example, the correlation network is simply a acquaintance network.

Analogously, the similarity graph of C with regard to ρi,j , denoted S = (C, S),
is defined to be an undirected graph where weights of edges si,j ∈ S instead are
given by σi,j .

By concept we mean a group of objects that are approximately similar – form-
ing a cluster in the similarity graph – and therefore approximately interchange-
able in their respective contexts. In the word example this may correspond to a
group of semantically and/or syntactically similar words (e.g. termed semantic
community or topic in the natural language processing community), whereas in
the people example, a concept is a group of people that have similar circles of
acquaintances, such as a group of colleagues.
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3.2. Example

As a simple stylized example, consider the set of objects C = {a, b, c, d, e, f, g}
with the symmetric, binary correlation graph shown to the left in Fig. 1. Trans-
forming this correlation graph to the similarity graph shown in the same figure
using Eq. 1, the pairwise similarities become positive when two objects have
overlapping contexts. Each of the two clusters in the similarity graph is then
identified as a concept.

Note that in the case of the binary relationship graph, the L1-norm between
two objects, i and j, is given by the number of neighbours that they do not share:

|ρi − ρj |1 = |ni ∪ nj | − |ni ∩ nj | = |ni|+ |nj | − 2|ni ∩ nj |, (4)

where ni and nj are the neighbourhoods of i and j. Since the maximum possible
norm of the difference is |ni|+ |nj |, the similarity between i and j becomes

σi,j = 1− |ni|+ |nj | − 2|ni ∩ nj |
|ni|+ |nj |

=
2|ni ∩ nj |
|ni|+ |nj |

, (5)

which is known as the Sørensen-Dice coefficient (Dice, 1945; Sørensen, 1948),
that, in turn, is analogous to the commonly used Jaccard coefficient (Jaccard,
1912) through a monotonic transformation.

4. Methods

4.1. Similarity calculations

In order to efficiently and scalably transform a correlation graph into a similarity
graph, we utilize two observations concerning the correlation graph with regard
to locality and sparseness. Firstly, according to our definition of similarity, an
object only has a degree of similarity to its second-order neighbours (its neigh-
bours’ neighbours) in the correlation graph R. Let ni and nj be the neighbouring
vertices of i and j respectively, and ρi,k = 0 if k 6∈ ni. Then

L1(i, j) =
∑
k∈ni

|ρi,k| −
∑

k∈ni∩nj

|ρi,k|+
∑
k∈nj

|ρj,k| −
∑

k∈ni∩nj

|ρj,k|+
∑

k∈ni∩nj

|ρi,k − ρj,k|

= |ρi|1 + |ρj |1 + Λi,j , (6)

where

Λi,j =
∑

k∈ni∩nj

(|ρi,k − ρj,k| − |ρi,k| − |ρj,k|) (7)

When calculating Eq. 1 it is therefore sufficient to compare differences between
weights ρi,k and ρj,k of edges from i and j to neighbours k that i and j have
in common, given that we have the weight sums of outgoing edges of i and j.
In practice, we generate a similarity graph by first summing weights of outgoing
edges per vertex, and then building an intermediate undirected two-hop multi-
graph of S, where an edge (i, j) that corresponds to a hop through k in S has
weight |ρi,k−ρj,k|−|ρi,k|−|ρj,k|. The L1-norm between i and j is then calculated
by summing the weights of all edges between i and j in the multigraph according
to Eq. 7, and adding this to the edge weight sums of i and j.
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Just as our approach is applicable for different correlation measures, it is not
strictly limited to the L1-norm. Using other distance measures is also possible,
given that these can be decomposed in a way akin to Eq. 6.

4.1.1. Approximations

Even though we only need to consider shared neighbours when calculating the
similarities between objects, these calculations still scale unfavorably as the sum
of the square of in-degrees per vertex, since we consider all pairs of incoming edges
of vertex k when generating two-hop edges. We therefore need to approximate
the similarity measure by reducing in-degrees. To be able to determine whether
a certain object distance with respect to a distance measure D is relevant or not,
typically we would like to ensure that the error ED(i, j) in any specific distance
approximation is less than a fixed level θD,

ED(i, j) ≤ θD (8)

and more specifically for the L1-norm approximated by L̃1,

E1(i, j) = |L1(i, j)− L̃1(i, j)| ≤ θ1. (9)

If we would like to remove terms by approximating by zero while keeping the
total approximation error E1(i, j) as small as possible, we should remove the
smallest absolute correlation terms |ρi,k| in Eq. 6. Put differently, we discard the
edges with the smallest weights in the correlation graph. Let τi be a threshold
value below which absolute correlations of object i are approximated by zero,
and |ρ̌i|1 the norm of discarded correlations:

|ρ̌i|1 =
∑

|ρi,k|<τi

|ρi,k|. (10)

The upper bound of the error is then given by

E1(i, j) ≤ |ρ̌i|1 + |ρ̌j |1, (11)

where E1(i, j) = |ρ̌i|1 + |ρ̌j |1 when the edges of discarded relations of i and j
do not share any destination vertex k. When calculating the object similarity
based on the L1-norm, we can therefore reduce the number of terms we need to
compare by removing low correlation values with predictable errors. Lowering
the number of terms in Eq. 7 while guaranteeing an error E1(i, j) ≤ θ1 is then a
matter of sorting absolute correlations |ρi,k| and, starting with the smallest one,
removing correlations until the cumulative sum reaches θ1/2, which is one of the
terms of the bound in Eq. 11.

This brings us to our second observation, which is that in most correlation
graphs of interest, a substantial fraction of the correlations from one object to
others are, if not zero, very small or even magnitudes smaller than its largest
relations, as exemplified in Fig. 2. We can therefore effectively prune a large
fraction of the links while keeping the cumulative discarded weight (and error)
comparatively low.

Moreover, if reducing terms in Eq. 6 has priority over accuracy, we may start
at the other end by specifying a maximum in-degree per vertex, and keep the
corresponding number of incoming edges with the largest weights. Doing so we
utilize that the main bulk of vertices have low in-degrees and are therefore not
affected by the pruning. This situation is illustrated in Fig. 3. By calculating and
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Fig. 2. The cumulative distribution function of edge weights in the Billion word correlation
graph described in Sec. 5.1.1 shows that a large fraction of edges with low weights can be
pruned. For example, approximately 90% of the edges are discarded when considering edges
with weights ≥ 0.01.

storing the sums of discarded weights of outgoing edges per vertex, we can then
readily calculate the error bound per object pair according to Eq. 11.

Alternatively, since ψi,j = |ρi|1 + |ρj |1 is known, we can approximate the

L1-norm by solely approximating Λi,j in Eq. 6, with an analogous term Λ̃i,j for
the edges in the pruned graph:

L̃′1(i, j) = ψi,j + Λ̃i,j . (12)

Note that each term in Eq. 7 is at most 0 due to the triangle inequality, and that
Λi,j ≤ Λ̃i,j ≤ 0 since the terms in Λ̃i,j constitute a subset of the terms in Λi,j .

The approximation error for L̃′1(i, j) then becomes

E′1(i, j) = |L1(i, j)− L̃′1(i, j)| = |Λi,j − Λ̃i,j | = Λ̃i,j − Λi,j (13)

and hence

0 ≤ E′1(i, j) ≤ −Λi,j . (14)

For the error, εi,j , of the approximate relative L1-norm and of the approximate
similarity σ̃i,j , this translates to

εi,j ≤
−Λi,j
ψi,j

= 1− ψi,j + Λi,j
ψi,j

= σi,j , (15)

and so the error is bound by

0 ≤ εi,j ≤ σi,j . (16)

4.2. Discovering concepts

After transforming a correlation graph to a similarity graph, we can use the latter
to find interesting structural properties among objects in terms of their similarity
relations. Since two objects are similar if they occur in similar contexts, we can
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Fig. 3. The cumulative distribution function of in-degrees for the graph referred to in Fig. 2
illustrates that it is possible to apply an in-degree threshold while affecting comparably few
vertices. Only a small percentage of the vertices are affected, for instance, when capping the
in-degree at 500 edges.

interpret the notion of similarity as something that the objects together exhibit
if they are approximately exchangeable in their respective contexts, being able
to take each other’s role. This notion of similarity requires very little, if any,
assumptions about the properties of the objects per se, since it is completely
based on the relations between objects.

Given a set of objects and their similarities, we can view a pair of objects i
and j that have similarity σi,j = 1 as equivalent. This is an equivalence relation
in the formal sense since it satisfies reflexivity, symmetry and transitivity. We can
therefore partition the set of objects into equivalence classes and interpret each
class, in which all objects are interchangeable, as a concept. Due to noise and
slight variations, however, full similarity is seldom fulfilled in practical applica-
tions. We therefore allow objects that are approximately similar, i.e. σi,j ≥ 1− ε
for some small constant ε, to belong to the same class. Due to this approxima-
tion, transitivity no longer holds, since although i is approximately similar to
j and j is approximately similar to k, i is not necessarily approximately simi-
lar to k. From this follows that classes can overlap, which reflects that objects
indeed may take several different roles (consider for instance proteins with mul-
tiple functions, or polysemous words (Palla et al., 2005)). Each concept is then
constituted by a group of objects where each object has at least similarity 1− ε
to each other object.

From a graph perspective, these groups correspond to cliques (i.e. complete
subgraphs) in a similarity graph where σi,j ≥ 1 − ε for all edges. Since cliques
can contain other cliques – in fact, there is a combinatorial explosion of such
sub-cliques – we require that a concept is a clique that is not a subset of another
clique, i.e. it is a maximal clique. However, finding maximal cliques in graphs
is a highly challenging problem, both in theory and practice. We therefore ap-
proximate maximal cliques with communities, i.e. clusters of vertices in the sim-
ilarity graph. An approach for finding such communities at scale is described in
Sec. 4.3.2.
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1: ins = edges.map(((i,j),rij) => (j,(i,rij)))
2: pairs = ins.join(ins).filter((k,((i,rik),(j,rjk))) => i<j)
3: terms = pairs.map((k,((i,rik),(j,rjk))) =>
4: ((i,j),abs(rik-rjk)-abs(rik)-abs(rjk)))
5: .reducebykey((v,w) => v+w)

Fig. 4. Pseudo-code of the sum term calculation in Eq. 6. 1) Edge tuples with vertex indices
i and j, and weights rij are mapped to key-value pairs keyed by destination vertices. 2) A
two-hop graph is generated through self-join, and unique in-edge pairs are extracted through
filtering. 3-4) All terms in the sum in Eq. 6 are calculated and 5) summed per two-hop neighbour
pair.

4.3. Implementation

4.3.1. Similarities

The calculations of the approximations of the difference norms |ρi − ρj |1, as
formulated in Eq. 6, lend themselves well to functional programming, since they
can be implemented as a small number of standard transformations applied on
a collection of correlation graph edges. The procedure can be summarized in the
following steps:

1. For each vertex i, calculate the norms |ρi|1, i.e. the weight sum prior to pruning.

2. Prune the correlation graph by filtering out edges with weights below a given
threshold value, τi, and/or by keeping a given number of incoming edges with
the largest weights per vertex.

3. Calculate Λ̃i,j for each pair of vertices that share at least one neighbour in
the pruned correlation graph. This step is described in pseudo-code in Fig. 4
and involves a self-join operation for building a two-hop multigraph that links
second-order neighbours, followed by a map transformation for calculating the
terms in the sum, which subsequently are summed up per vertex pair by a
reduce operation.

4. For each vertex pair in the previous step, calculate the approximate relative
L1-norm, l̃i,j = (Λ̃i,j+ψi,j)/ψi,j , and the approximate similarity σ̃i,j = 1− l̃i,j .

The method is implemented in the Scala programming language and uses the in-
memory data processing framework Apache Spark (Zaharia et al., 2012), which
enables us to employ the method at scale in terms of computing hardware. To
facilitate reproducibility, the implementation is available with an open source
license in an online repository.3 Since we are exclusively using standard core
primitives in Spark (map, filter, join etc.), implementing the method in
other similar frameworks, such as Apache Flink (Alexandrov et al., 2014), is also
possible.

4.3.2. Concepts

In order to find object clusters in the similarity graph, we employ a community
detection method (community and cluster are used interchangeably from here
on). There is a wealth of techniques to choose from and we refer the reader to

3 https://github.com/sics-dna/concepts
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Fortunato (2010) for a thorough review of the area. For our purposes we need
an algorithm that allows for overlapping communities and has good scalability
characteristics. The ability to detect overlapping communities is important for
concept discovery, as objects may exhibit multiple roles within a graph. Another
preference is that the algorithm does not require that the number of clusters is
predefined, but this number should rather be discovered from data.

Based on these criteria, we employ an algorithm that is akin to the Speaker-
listener label propagation algorithm (SLPA) by Xie et al. (2011). In their algo-
rithm, each vertex is assigned a memory, constituted by cluster label-frequency
pairs, that is initialized with a unique cluster label. Vertices are then updated
sequentially and asynchronously: For a vertex i, each of i:s neighbours randomly
(proportionally to label frequencies) sample a cluster label from their respective
memories. These labels are then sent to i, which adds the most common label
to its memory. The procedure is repeated for a given number of iterations, after
which vertices are assigned to clusters with frequencies above a specific threshold.

In our implementation, all vertices are updated synchronously and in parallel,
and instead of using memories with frequency information, we associate each
vertex with a queue (i.e., a “first in-first out” data type) of community labels.
More specifically, for each vertex i,

1. Initialize a queue qi = [i].

2. Sample a label uniformly from qi and send it to all neighbours.

3. Of the received labels, add the one occurring most times to qi. If qi has reached
a maximum capacity, γ, discard the oldest label in qi prior to adding the new
one.

4. Repeat from step 2 m times.

5. Associate i with clusters with labels that occur in qi with a frequency above
a given threshold.

Since a vertex can be associated with several communities, the communities can
overlap, including the case where a community is a subset of another community.
It is also possible that several equivalent clusters are found, in which case the
redundant ones are removed in a post-processing step.

The reason for storing cluster labels in queues, besides from ease of imple-
mentation, is that it has the effect that transient cluster assignments at early
iterations are quickly discarded.

Note that the current implementation does not take edge weights into consid-
eration. Instead, edges with weights below a threshold, σm, are discarded prior
to applying the above steps.

4.4. Scalability characteristics

In order to enable practical use on large tasks in terms of the number of objects,
correlations and example data, a key design goal is scalability. Since we are
using relational primitives to represent graphs, the scalability of the algorithm
can be studied using established results from relational algebra (Chandra and
Merlin, 1977; Bitton et al., 1983).

The most computationally demanding component of the algorithm is build-
ing the two-hop graph through a self-join operation (the third step in Sec. 4.3.1).
Since a self-join is a conjunctive query (Chandra and Merlin, 1977) in relational
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algebra terms, we can reason about its computational cost. Specifically for a dis-
tributed environment, Koutris and Suciu (2011) define a parallel algorithm as a
sequence of parallel computation steps, and define its cost as the number of steps
required to complete the algorithm. The authors prove that a join operation can
be completed in one parallel computational step using the hash-join algorithm,
by using a communication and a computation phase. Just as importantly, they
prove that the hash-join operation is load balanced and as such it ensures linear
speedup (doubling the server count reduces the load by half) and constant scale-
up (when doubling both the size of the data and number of servers, the running
time remains the same). Specifically for the Apache Spark platform, on which
we implement the algorithm, the self-join operation creates what Zaharia et al.
(2012) call a narrow dependency. This property allows for pipelined executions
of all operations on one node up until the reduction step in Fig. 4, without the
need for expensive data shuffles through the network.

5. Experiments

5.1. Examples

In order to demonstrate the broad applicability of our approach, we will show-
case it in three distinct domains: computational linguistics, music and molecular
biology. Here we prioritize breadth over depth, and more in-depth evaluations of
the method’s performance with respect to specific applications will be topics in
future work.

5.1.1. Words

We begin by relating words in terms of their co-occurrence in text, where two
words, i and j, co-occur if they both appear within a window of n words. In
the simplest case, for n = 2, words co-occur if they are adjacent. There exist
many different word association measures, see (Pecina, 2008) for a large number
of examples, such as pointwise mutual information (Church and Hanks, 1990)
and normalized versions thereof (Bouma, 2009). Here we simply measure the
association between i and j as the relative frequency of j occurring in i:s vicinity,
or, in other words, as the conditional probability that a randomly selected word
in a window that contains i, will be the word j. That is, ρi,j ≈ ci,j/ci, where ci
and ci,j are the number of occurrences of i, and i together with j, respectively.
Note that this measure is not symmetric and so ρi,j 6= ρj,i may be true.

In this example we use the One billion word corpus (Chelba et al., 2013),
which consists of nearly one billion tokens and originates from crawled online
news texts. We count the number of occurrences of bigrams (pairs of adjacent
words) with words consisting only of alphabetic characters. This results in ap-
proximately 8 million unique bigrams and a vocabulary with roughly 0.3 million
words. From the bigram counts we relate words by their ordered adjacency.

Despite the comparably modest size of this corpus and the narrow context
window, the method manages to discover groups of words that reflect both syn-
tactic and semantic concepts. Examples of such concepts are shown in Fig. 5,
where we see that the groups correspond e.g. to specific nouns, (tablet, laptop,
notebook etc.), adjectives (chic, trendy, fashionable etc.), or adverbs (strongly,
intensely, vigorously, etc.). Note that antonyms, in addition to synonyms, may
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Fig. 5. Examples of groups of words in a word similarity graph based on the Billion word
corpus. For sake of clarity, edges with weights σi,j ≥ 0.15 are shown.

occur in the same group (e.g. warmer and colder). This highlights that the no-
tion of similarity (here corresponding to what is termed relatedness in the NLP
field) is very much dependent on the choice of correlation measure. The corre-
lation measure may therefore be both application and domain-specific, whereas
the definition of similarity, given the correlation measure, is domain-agnostic.
Accordingly, antonyms are indeed similar by definition with respect to the cor-
relation measure used in this example. However, for other correlation measures,
possibly supporting negative correlations, antonyms may occur in separate con-
cepts.

5.1.2. Artists

In the next proof-of-concept we relate artists by using a dataset that represents
the listening habits of users of the Last.fm music service.4 This dataset, provided
by Celma (2010), consists of approximately 19 million track plays of 992 users.

4 http://www.last.fm/
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Fig. 6. The cumulative distribution function of in-degrees for the artist correlation graph.

For each user, we extract sequences of played artists – there are roughly 177000
in total – and consider the context of an artist to be defined by the probability
distribution of subsequently played artists. Hence, we assume artists are related
in a Markov chain, where each artist constitutes a state, and where there is
a directed edge from artist i to artist j weighted with the probability that j is
played next, given that i is currently playing. This probability is simply estimated
as ρi,j ≈ ci,j/ci, where ci and ci,j are the number of times i, and i followed by j
occur in the data set, respectively.

The in-degree distribution of the artist correlation graph resembles those of
the word correlation graphs, see Fig. 6, which again means that relatively few
vertices are affected by in-degree pruning. Transforming the artist correlation
graph to a similarity graph also results in tightly grouped artists that can be
clustered, where the resulting clusters appear to represent musical genres as
exemplified in Fig. 7. As such, the similarity graph could be used in a music
recommendation system to relate similar artists through the listening habits of
users, similar to a collaborative filtering system. We could then also provide an
intuitive way to incorporate the popularity of artists via their play frequencies in
order to mitigate the effect of popularity bias in recommendations (Celma and
Cano, 2008).

5.1.3. Codons

Finally, we apply the method in molecular biology, where we consider codons
as objects. Codons are triplets of adjacent nucleotides in DNA that translate
to amino acid residues that in turn form proteins. These are related through
codon substitution dynamics, which is central both for understanding molecular
evolution and in applications such as DNA sequence alignment (Anisimova and
Kosiol, 2009). Since there are only 64 codons in total, this example differs from
the previous two in that we consider relatively few objects.

Codon substitutions are often modeled as Markov processes (Anisimova and
Kosiol, 2009), where the substitution probabilities of a codon at a specific loca-
tion are assumed to be independent of neighbouring codons as well as previous
codons at the same location. In this example we use an empirically derived codon
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substitution matrix provided by Schneider et al. (2005), where we consider the
context of a codon i to be given by the relative substitution frequencies (ρi,j)

n
j=1

to other codons j.
As seen in the resulting codon similarity graph in Fig. 8, codons that trans-

late to the same amino acid according to the standard genetic code (Nirenberg
et al., 1965) tend to be grouped. This reflects that codons that are highly similar
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are commutable – quite literary – since substitutions between these codons are
neutral under evolution. These clusters are also present in the correlation graph
and therefore preserved through the similarity graph transformation.

We now shift perspective and view amino acid as a concept. Again looking at
Fig. 8, we see that some of the amino acids are grouped. This can be explained
by a higher degree of neutrality within groups than between them, which has
been observed in empirical amino acid substitution matrices, such as the accepted
point mutation (PAM) matrix by Dayhoff et al. (Dayhoff and Schwartz, 1978). In
comparison, Wu and Brutlag derived amino acid substitution groups by group-
wise (as opposed to pairwise) statistical analysis of protein databases (Wu and
Brutlag, 1996). The groups shown in Fig. 8 ({I, L, M, V}, {K, R} and {N, S}) all
agree with their findings. In summary, the codon similarity graph captures both
concepts and higher-order concepts: from codons to amino acids, via the genetic
code, to collections of amino acids that constitute known substitution groups.

5.2. Evaluation

Due to the general nature of our approach, where several different correlation
measures can be used (e.g. co-occurrence probability, co-occurrence existence,
pointwise mutual information, normalized pointwise mutual information, Jaccard
coefficient, Sørensen-Dice coefficient), an exhaustive evaluation of the method
across domains is beyond the scope of this paper. Instead we mainly evaluate our
method in the computational linguistics domain, where there is a comparably
large body of related work, and leave other domain and application specific
evaluations for future work. To broaden the evaluation, we consider different
correlation measures and corpora.

5.2.1. Similarity discovery

An established approach to quantitatively evaluate the performance of word
similarity methods is to use benchmarks with word pairs that have been manually
graded with respect to degree of similarity. Since these benchmarks also contain
unassociated words, it is not possible to do a direct comparison between our
method and other approaches in terms of benchmark performance, since our
method exclusively relates words that have a certain degree of similarity (indeed,
this is one of the reasons it is scalable). Instead we compare similarities σi,j with
corresponding benchmark similarities for word pairs (i, j) that do exist in the
similarity graph. For this purpose we use the standard WordSim-353 (WS-353)
test collection (Finkelstein et al., 2001), which consists of 353 word pairs that
have been graded by human annotators.

In the first experiment we use the English Google Books n-gram dataset
(Michel et al., 2010; Lin et al., 2012), which consists of n-gram (contiguous se-
quences of n tokens) counts derived from a 361 billion token-corpus. We build a
correlation graph from co-occurrence windows of size 5 using conditional prob-
abilities as described in 5.1.1, filter out words that occur with a frequency less
than 10−8 and edges ρi,j < 10−3, and set the maximum in-degree to 200. In
the similarity graph, which is built in less than 10 minutes (cf. Fig. 17), 60%
of the WS-353 word pairs are present, resulting in a Spearman rank correlation
of 0.76. The current state of the art (with respect to the whole dataset) is 0.81
(Halawi et al., 2012; Yih and Qazvinian, 2012). These figures represent the cor-
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relation with respect to the average annotator score, and as a comparison the
mean performance of individual annotators, with respect to the mean score of
the remaining annotators, is in fact also 0.76 (Hill et al., 2014). The preciseness
of this agreement, however, is most likely coincidental, although it gives a strong
indication of the validity of our approach.

In the next experiment, we compare three different types of similarities:
firstly, σi,j using our method, secondly, WS-353 similarities, and thirdly, co-
sine similarities between vectors generated by GloVe (Pennington et al., 2014),
the current state-of-the-art word embedding method. The cosine similarities are
calculated using pre-trained word vectors made available by the authors.5 Four
embeddings are provided, with dimensions 50, 100, 200 and 300, that each relates
words in windows of size 10. The GloVe vectors are learnt from a concatenation
of a Wikipedia dump from 2014 and the Gigaword 5 corpus (Graff, 2003),6 which
together contain approximately 6 billion tokens.

The Gigaword 5 corpus is not freely available, so to enable reproducibility we
apply CCM solely on a Wikipedia dump. This dump is more recent (from March
2015) and therefore larger than the Wikipedia corpus used to train the GloVe
vectors. The difference in size between the corpora used by GloVe and CCM is
therefore smaller than if we would have used the 2014 version of Wikipedia.

We discard all tokens that contain non-alphanumeric characters, which leaves
us with approximately 3.6 billion tokens. These are then used to calculate cor-
relations between adjacent words using bigrams that occur at least 20 times in
the corpus. Correlations ρi,j are then given by the pointwise mutual information
between i and j (Church and Hanks, 1990):

ρi,j = log2

pi,j
pi pj

, (17)

where pi and pj are the probabilities that i and j are observed in the corpus,
and pi,j is the probability that they are observed together (i.e. being adjacent
in this case). These probabilities are estimated by pi ≈ ci/ct, pj ≈ cj/ct and
pi,j ≈ ci,j/ct, where ci, cj and ci,j are occurrence counts, and where ct is the
total number of tokens in the corpus. Since pi pj is the probability that i and j
co-occur if they were independent, ρi,j = 0 means that the objects are completely
unrelated. If i and j co-occur more frequently than expected from chance, then
ρi,j > 0. Similarly, ρi,j < 0 if they are observed together to a lesser extent than
expected. Note further that the measure is symmetric, i.e. ρi,j = ρj,i.

In comparison to associating objects with conditional probabilities, pointwise
mutual information has the advantage of being less dominated by very frequent
object occurrences (consider for instance the correlation between a relatively
infrequent word and a word such as the).

After building the correlation graph, we apply an in-degree threshold of 100,
and calculate similarities between word pairs that are shared with WS-353. The
cosine similarities between the same word pairs are then calculated for the four
different word embeddings. To aid intuition and enable a qualitative comparison
between acquired similarities, we show scatter plots in Fig. 9 (for 300D vectors
in the case of GloVe).

All three types of similarities are inter-correlated. Specifically, the Spearman

5 http://nlp.stanford.edu/projects/glove/
6 https://catalog.ldc.upenn.edu/LDC2011T07
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Table 1. Uniformly sampled examples of concepts.

achievements, examples minority, majority

burning, burn founding, associate

breakfast, lunch thinking, thought

removing, remove foreign, overseas

easy, easier chrysler, inc

colour, color found, discovered, bodies

loved, liked, enjoy, loves heard, hear, hearing

liquid, toxic fiscal, banking, financial, economic, gambling

tuition, tax solar, wind

britain, nation impose, enforce, violating, violated, imposed, imposing

rank correlation coefficient between σi,j and WS-353 is 0.65, and the correlations
with the cosine similarity depend on the number of dimensions used. For 50D,
100D and 200D, the cosine similarity is more strongly correlated with σi,j (0.71,
0.68 and 0.68, respectively) than with WS-353 (0.57, 0.63 and 0.67, respectively),
whereas for 300D, the cosine similarity is more strongly correlated with WS-353
(0.73) than with σi,j (0.69). The latter case is the one shown in Fig. 9.

In summary, despite CCM using a smaller corpus (3.6B versus 6B tokens)
and smaller window sizes (2 versus 10), CCM and GloVe generate surprisingly
comparable similarities. In particular, we expected that the difference in window
sizes would have a larger impact, since substantially more correlations are present
beyond the narrow adjacency window CCM employs in this case.

5.2.2. Concept discovery

We will now demonstrate the concept discovery approach by applying the clus-
tering algorithm described in Sec. 4.3.2 on a similarity graph transformed from
a word correlation graph. The latter is built from the Billion word corpus using
bigram counts, where correlations are given by pointwise mutual information.

The correlation graph consists of vertices with pi ≥ 10−5 and edges with
ρi,j ≥ 4 bits, and has a maximum in-degree of 1000 edges. When clustering the
corresponding similarity graph, σm = 0.25, queues have capacity 4, and the iter-
ation described in 4.3.2 is performed 16 times. The resulting cluster assignments
are then given by labels that occupy at least 50% per queue. Out of these, the
most dominant cluster assignments per vertex are depicted in Fig. 10.

As examples, a random set of clusters is shown in Table 1, and a set of clusters
of our choosing in Table 2. Both sets – with some exceptions (e.g. {britain,
nation}, perhaps due to that both words are strongly correlated with great) –
demonstrate that the method is capable of discovering concepts that we perceive
as meaningful in that they capture abstract syntactic and semantic notions in
the corpus, such as vehicle, US state (which, incidentally, also demonstrates our
bare-bones parsing of the corpus, since carolina and hampshire – lacking north,
south and new – belong to this concept), color, nationality, day and so on.
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Fig. 9. Scatter plots that compare similarities for labeled word pairs. GloVe is trained on
Wikipedia (2014) and the Gigaword 5 corpus using windows of size 10 and 300-dimensional
word vectors, whereas CCM uses Wikipedia (2015) with windows of size 2. Top: WS-353
similarity versus σi,j . Middle: WS-353 similarity versus GloVe cosine similarity. Bottom: GloVe
cosine similarity versus σi,j .
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Fig. 10. Word similarity graph. In the electronic version of the paper, concepts are color coded
and vertex labels are visible after zooming. The visualization is done with Cytoscape (Shannon
et al., 2003).

5.3. Parameter sensitivity

In this section we will report how approximation errors and relevant graph struc-
ture measures are affected by the correlation graph pruning.
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Table 2. Selected examples of concepts.

significant, dramatic, greater, major, enormous, modest, substantial, incredible, sharp, slight,
considerable, meaningful, largest, greatest, tremendous, biggest, bigger, great, unprece-
dented, sudden, huge, rapid, steady, vast, massive, big, genuine, large

dallas, memphis, milwaukee, pittsburgh, detroit, cincinnati, indianapolis, diego, sydney, la,
houston, cleveland, chicago, louis, sacramento, oakland, orleans, vancouver, francisco, or-
lando, angeles, baltimore, seattle, philadelphia, phoenix, buffalo, columbus, atlanta, vegas,
denver, boston, montreal, toronto, miami, portland

yale, harvard, duke, oxford, cambridge, school, ucla, stanford, university, college

arkansas, colorado, jersey, delaware, georgia, kansas, florida, mississippi, minnesota, wiscon-
sin, dakota, massachusetts, indiana, california, maine, pennsylvania, illinois, utah, carolina,
louisiana, alaska, tennessee, texas, missouri, maryland, oklahoma, iowa, montana, hampshire,
oregon, nevada, kentucky, ohio, alabama, connecticut, michigan, virginia, arizona

grey, white, yellow, gray, blue, pink, red, dark, orange, black, green

van, convoy, vessel, aircraft, ship, bus, boat, crews, vessels, cycle, bike, vehicle, trains, boats,
helicopters, ships, vehicles, jet, helicopter, truck, buses, car, cars, flights, planes, firefighters,
motorcycle, trucks, plane

telegraph, tribune, post, xinhua, times, magazine, newspaper, mirror, observer, herald,
guardian

broadcasting, mining, banking, tech, telecommunications, wholesale, utility, retail, telecom,
infrastructure

main, principal, key, decisive, vital, precious, helpful, valuable, critical, useful, essential,
crucial, necessary, important

appears, sounds, appeared, sound, seemingly, looks, appear, seem, seems, appearing

soccer, tennis, diving, nba, cycling, boxing, hockey, sailing, basketball, football, baseball,
rugby, nfl, golf, cricket, nhl, swimming

weeks, years, year, days, month, quarters, hours, hour, contests, moments, decades, holes,
centuries, week, months, shortly, primaries, decade, minutes, seconds

tomorrow, wednesday, sunday, today, yesterday, monday, thursday, tuesday, tonight, satur-
day, friday

footage, photograph, season, images, episode, pictures, episodes, videos, photographs, tape,
sessions, session, photos

high, lower, highest, upper, lowest, average, low, median, higher

gold, fuel, ore, electricity, silver, copper, water, ethanol, petroleum, oil, gas, uranium, coal,
power, energy, petrol

isolated, remote, wealthy, urban, vulnerable, poor, poorer, poorest, impoverished, rural

ninth, third, first, sixth, fourth, fifth, seventh, second, eighth

venezuelan, british, italian, australian, palestinian, american, spanish, iranian, yemeni,
afghan, georgian, swedish, austrian, lankan, lebanese, irish, german, argentine, saudi, indian,
brazilian, greek, dutch, serbian, communist, egyptian, cuban, myanmar, pakistani, israeli,
colombian, nigerian, tibetan, syrian, mexican, russian, portuguese, korean, somali, thai, so-
viet, swiss, us, czech, french, polish, chinese, uae, sudanese, japanese, belgian, norwegian,
turkish, kurdish, tibet, indonesian, canadian, haitian, iraqi, english, danish, tamil

5.3.1. Approximation errors

We begin by evaluating the degree of approximation errors caused by the in-
degree threshold as follows:

1. Build a reference correlation graph R that represents the full set of unpruned
correlations. Here R is built from co-occurrence frequencies in the Billion word
corpus, where correlations are given by conditional probabilities as described in
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Fig. 11. Densities of absolute similarity errors εi,j for different in-degree thresholds δ.
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Fig. 12. Densities of relative similarity errors εi,j/σi,j for different in-degree thresholds δ.

Sec. 5.1.1. Correlations where ρi,j ≥ 10−5 are kept and in-degrees are capped
at 1000. Furthermore, words occurring with a frequency less than 10−5 are
discarded.

2. Transform R to a similarity graph S, constituting the “true” similarity graph.

3. For different in-degree thresholds δ ∈ {100, 300, ..., 900}:
(a) Prune R into an approximate correlation graph Rδ.
(b) Transform Rδ into an approximate (with respect to R) similarity graph
Sδ.

(c) Calculate the errors εi,j = |σi,j − σ̃i,j | as the differences between the edge
weights in corresponding edges (i, j) in S and Sδ.

The result of this procedure is shown in Figures 11 and 12, where we plot the
densities (normalized counts of binned errors) of the absolute error εi,j , as well
as of the relative error, εi,j/σi,j with respect to the similarity. In both cases the
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Fig. 13. Heat map of similarities σi,j and relative errors εi,j/σi,j (log scale) for δ = 900.
Color coded in the electronic version of the paper, where red, yellow and cyan indicate a high
density, and blue indicates a low density.

approximation errors quickly decrease with growing in-degree thresholds. Note
also that the relative error in Fig. 12 is consistent with the error bound in Eq.
16 in being bound by 1.

We hypothesize that the relative errors tend to be smaller for large similarities
σi,j than for small ones, since if a correlation ρi,k between i and some k is
sufficiently small to be discarded, the same goes for the correlation ρj,k as i
and j are similar. This has the effect that the number of discarded terms in Λi,j ,
cf. Eq. 13, is comparably small (the number of discarded terms is at most the sum
of discarded edges of i and j, which is the case when neither of these edges share
a common terminal k). To test this hypothesis, we plot a heat map (i.e., a color-
coded 2-dimensional histogram) of the similarities σi,j and the relative errors
εi,j/σi,j (see Fig. 13), and indeed, the relative error appears to be negatively
correlated with the similarity.

5.3.2. Graph structure

We also explore how the structures of the correlation and similarity graphs are
affected by the in-degree threshold. The same parameters are used as in the
previous experiment. We measure the mean local clustering coefficients (Watts
and Strogatz, 1998) of the graphs, which is the expected local density of edges in
the neighbourhood of a vertex. More specifically, for a given vertex, this measure
is given by the ratio of existing edges between the vertex’ neighbours, and all
possible edges between those neighbours. The mean clustering coefficient can be
interpreted as a measure of the degree by which nodes are clustered. This is
of interest both for the correlation graph, since it an indication of the sparsity
of the graph, and, in particular, for the similarity graph, since it measures the
existence of concepts in the form of tightly clustered objects.

As seen in Fig. 14, both graphs are highly clustered compared to random
graphs with corresponding numbers of edges and vertices. In the correlation
graph, the correlation coefficient is relatively large for small in-degree thresholds
and grows substantially as this threshold increases. The situation is different for
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Fig. 14. Mean local clustering coefficients for correlation and similarity graphs (solid lines)
for different in-degree thresholds, and for random graphs (dashed lines) with corresponding
numbers of vertices and edges. Standard errors given by error bars.

the similarity graph, where although the clustering coefficient grows with the
threshold, the relative coefficient with respect to the random graph is slightly
decreasing. Naturally, the mean in-degree of the correlation graph decreases with
decreasing in-degree threshold, which is translated to a decrease in the similarity
graph, cf. Fig.15.

We can conclude that the similarity graph has a clustered structure regardless
of in-degree threshold and so contains concepts in the form of grouped objects,
and that the structures of both the correlation graph and the similarity graph
change substantially with lowered in-degree thresholds. This is expected, but
importantly, the change is in both cases smooth, e.g. we do not experience sudden
“phase transitions”, which tells us that we can apply the in-degree threshold in
a predictable and controllable manner.
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Fig. 15. Mean correlation graph in-degree and similarity graph degree (unweighted, i.e. number
of edges) for different in-degree thresholds. Standard errors given by error bars.
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the One billion word corpus using a commodity laptop.
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Fig. 17. Runtime for different in-degree thresholds, and ρi,j ≥ 10−3. Built from Google Books
5-grams using an Amazon EC2 cluster (see text for details).

5.4. Runtime and scalability

To demonstrate that our approach is applicable at scale in practice, we apply it
on a dataset that is based on one of the largest, to our knowledge, text corpora
currently available, the Google Books n-gram dataset (Michel et al., 2010; Lin
et al., 2012), which corresponds to approximately 4% of all books ever printed.
The dataset is publicly available, and in our experiments we use the version that
is available through the Amazon S3 service.7 As described in Sec. 5.1.1, we use the
English language corpus which contains approximately 361 billion tokens. When
processed into 5-grams, the corpus results in a file with 24.5 billion rows and
the total compressed size of the dataset is 221.5 GB. This data is pre-processed
to create the correlation graph by retaining only alphabetic characters. The
resulting correlation graph before pruning has 706,108 vertices and 94,945,991
edges.

To perform the experiments we employ an Apache Spark cluster created
using the Amazon Web Services EC2 service.8 The cluster consists of 8 nodes (1
master and 7 slaves), where each node has 4 vCPUs and 30.5 GiB of memory
(EC2 instance type r3.xlarge), such that the total amount of memory available
to the cluster is roughly 186 GiB, as reported by Spark.

The experiment results support the theoretical investigation of the computa-
tional cost of the algorithm, cf. Sec. 4.4, and together with the pruning described
in Section 4.1.1 we are able to transform correlation graphs into similarity graphs
in reasonable amounts of time. This also holds true when using more modest
computational resources, as shown in Fig. 16, for building similarity graphs us-
ing the Billion word corpus as described in Sec. 5.1.1. Analogous results are
achieved in the Google 5-gram case, here with runtimes on the order of min-
utes, as seen in Fig. 17. The experiments were replicated three times, and the
runtimes are reported in Table 3. Together with Fig. 11, Fig. 16 and Fig. 17
illustrate the trade-off between accuracy, controlled via the in-degree threshold,

7 https://aws.amazon.com/datasets/google-books-ngrams/
8 http://aws.amazon.com/ec2/



28 O. Görnerup et al

100 150 200 250 300 350 400
In-degree threshold

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
N

um
be

r
of

ed
ge

s
in

co
rr

el
at

io
n

gr
ap

h
×107

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
um

be
r

of
ed

ge
s

in
si

m
ila

ri
ty

gr
ap

h

×109

Fig. 18. Number of edges in the correlation- and similarity graph, respectively, for different
in-degree thresholds. Built from Google Books 5-grams with the same configuration as in Fig.
17.

Table 3. Runtimes in seconds for Google Books dataset.

In-degree Run 1 Run 2 Run 3 µ σ

100 246.7 229.5 236.7 237.6 8.6

200 603.7 573.2 575.4 584.1 16.9

300 1062.4 998.3 1031.2 1030.7 32.0

400 1535.5 1602.5 1554.0 1564.0 34.6

and runtime, where the runtime scales favourably with an increasing in-degree
threshold. With respect to the in-degree threshold, we also observe a sublinear
scaling of the number of edges in the correlation graph, and a linear growth of
the number of edges in the similarity graph, as shown in Fig. 18. This reflects
the situation exemplified i n Fig. 3, namely that comparably few vertices are
affected by the in-degree threshold.

6. Conclusions

This paper proposes conceptually simple methods for discovering similarities
and concepts by transforming a correlation graph to a similarity graph on which
clustering is performed. As the approach does not rely on any intermediate rep-
resentation or dimensionality reduction, or on specific information about objects
besides their correlations, it is applicable with few restrictions to any domain in
which a correlation graph can be constructed. Our experiments show that the
approach not only can detect similarities and concepts in several types of data,
but also that it is computationally feasible for large-scale applications with very
large numbers of objects and correlations.
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Due to the generality of the approach there is a vast number of possible di-
rections to take. For instance, it can potentially be used to discover analogous
objects in gene regulatory data or protein interaction networks, to provide rec-
ommendations from user data, or in general for detecting higher-order dynamics
in discrete-valued stochastic processes. It then remains to quantitatively eval-
uate the properties of the scheme, for example in terms of application specific
benchmark performance, approximation error and runtime.

The main methodological challenge for future work revolves around how to
efficiently build hierarchical concept models. The concepts discovered through
the methods described in this paper essentially represent OR-relations: All con-
stituent objects of a cluster are commutable, and the concept can be said to be
observed if any of its constituents are. Analogously, strong clusters detected in
the correlation graph could be considered to represent AND-relations, where the
corresponding concept is observed when all of its constituents are. Both these
types of concepts can be identified, brought back into the estimation of the cor-
relation graph, and the process iterated, allowing for the discovery of complex
higher-order relations. How to reliably and efficiently perform this remains an
area of further study.
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